Suppr超能文献

德氏乳杆菌保加利亚亚种菌株在一种新型化学成分明确培养基中的生理学研究。

Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium.

作者信息

Chervaux C, Ehrlich S D, Maguin E

机构信息

Laboratoire de Génétique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France.

出版信息

Appl Environ Microbiol. 2000 Dec;66(12):5306-11. doi: 10.1128/AEM.66.12.5306-5311.2000.

Abstract

We developed a chemically defined medium called milieu proche du lait (MPL), in which 22 Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) strains exhibited growth rates ranging from 0.55 to 1 h(-1). MPL can also be used for cultivation of other lactobacilli and Streptococcus thermophilus. The growth characteristics of L. bulgaricus in MPL containing different carbon sources were determined, including an initial characterization of the phosphotransferase system transporters involved. For the 22 tested strains, growth on lactose was faster than on glucose, mannose, and fructose. Lactose concentrations below 0.4% were limiting for growth. We isolated 2-deoxyglucose-resistant mutants from strains CNRZ397 and ATCC 11842. CNRZ397-derived mutants were all deficient for glucose, fructose, and mannose utilization, indicating that these three sugars are probably transported via a unique mannose-specific-enzyme-II-like transporter. In contrast, mutants of ATCC 11842 exhibited diverse phenotypes, suggesting that multiple transporters may exist in that strain. We also developed a protein labeling method and verified that exopolysaccharide production and phage infection can occur in MPL. The MPL medium should thus be useful in conducting physiological studies of L. bulgaricus and other lactic acid bacteria under well controlled nutritional conditions.

摘要

我们开发了一种名为“类乳环境培养基(MPL)”的化学成分明确的培养基,其中22株德氏乳杆菌保加利亚亚种(保加利亚乳杆菌)的生长速率在0.55至1 h⁻¹之间。MPL还可用于培养其他乳酸菌和嗜热链球菌。我们测定了保加利亚乳杆菌在含有不同碳源的MPL中的生长特性,包括对所涉及的磷酸转移酶系统转运蛋白的初步表征。对于22株受试菌株,其在乳糖上的生长速度比在葡萄糖、甘露糖和果糖上更快。低于0.4%的乳糖浓度对生长具有限制作用。我们从CNRZ397和ATCC 11842菌株中分离出了2-脱氧葡萄糖抗性突变体。源自CNRZ397的突变体均缺乏利用葡萄糖、果糖和甘露糖的能力,这表明这三种糖可能通过一种独特的类甘露糖特异性酶-II转运蛋白进行转运。相比之下,ATCC 11842的突变体表现出多样的表型,这表明该菌株中可能存在多种转运蛋白。我们还开发了一种蛋白质标记方法,并证实了在MPL中可以产生胞外多糖和发生噬菌体感染。因此,MPL培养基在营养条件得到良好控制的情况下,应有助于开展保加利亚乳杆菌和其他乳酸菌的生理学研究。

相似文献

1
Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium.
Appl Environ Microbiol. 2000 Dec;66(12):5306-11. doi: 10.1128/AEM.66.12.5306-5311.2000.
4
Screening and selection of exopolysaccharide-producing strains of Lactobacillus delbrueckii subsp. bulgaricus.
J Appl Microbiol. 2003;95(6):1200-6. doi: 10.1046/j.1365-2672.2003.02122.x.
5
Exopolysaccharides produced by lactic acid bacteria of kefir grains.
Z Naturforsch C J Biosci. 2002 Sep-Oct;57(9-10):805-10. doi: 10.1515/znc-2002-9-1009.
6
Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR.
Int J Food Microbiol. 1998 Mar 3;40(1-2):87-92. doi: 10.1016/s0168-1605(98)00023-3.
9
A selective medium for the enumeration and differentiation of Lactobacillus delbrueckii ssp. bulgaricus.
J Dairy Sci. 2018 Jun;101(6):4953-4961. doi: 10.3168/jds.2017-14155. Epub 2018 Apr 5.

引用本文的文献

1
A Single Key for Many Doors? Unlocking the Bio-chemical Potential of Lactobacillus bulgaricus Metabolic Postbiotic.
Probiotics Antimicrob Proteins. 2025 Aug 14. doi: 10.1007/s12602-025-10700-5.
4
Development of chemically defined media for subsp. YF11 to eliminate the influence of hyperosmotic stress.
3 Biotech. 2023 Nov;13(11):375. doi: 10.1007/s13205-023-03788-5. Epub 2023 Oct 21.
5
A chemically-defined growth medium to support Lactobacillus-Acetobacter sp. community analysis.
PLoS One. 2023 Oct 12;18(10):e0292585. doi: 10.1371/journal.pone.0292585. eCollection 2023.
6
High temperatures augment inhibition of parasites by a honey bee gut symbiont.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0102323. doi: 10.1128/aem.01023-23. Epub 2023 Oct 4.
9
Formulation of Chemically Defined Media and Growth Evaluation of ZJ614 and ZJ625.
Front Microbiol. 2022 May 6;13:865493. doi: 10.3389/fmicb.2022.865493. eCollection 2022.

本文引用的文献

1
Carbohydrate Utilization in Lactobacillus sake.
Appl Environ Microbiol. 1996 Jun;62(6):1922-7. doi: 10.1128/aem.62.6.1922-1927.1996.
3
Minimal Requirements for Exponential Growth of Lactococcus lactis.
Appl Environ Microbiol. 1993 Dec;59(12):4363-6. doi: 10.1128/aem.59.12.4363-4366.1993.
4
Isolation and Characterization of Aminopeptidase-Deficient Lactobacillus bulgaricus Mutants.
Appl Environ Microbiol. 1989 Jul;55(7):1717-23. doi: 10.1128/aem.55.7.1717-1723.1989.
5
Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli.
Appl Environ Microbiol. 1986 Apr;51(4):825-31. doi: 10.1128/aem.51.4.825-831.1986.
6
Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus.
Electrophoresis. 2000 Jul;21(12):2557-61. doi: 10.1002/1522-2683(20000701)21:12<2557::AID-ELPS2557>3.0.CO;2-B.
10
The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism.
FEMS Microbiol Rev. 1997 Feb;19(3):187-207. doi: 10.1111/j.1574-6976.1997.tb00297.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验