Suppr超能文献

酿酒酵母中己糖转运对糖酵解动力学的调控

Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae.

作者信息

Reijenga K A, Snoep J L, Diderich J A, van Verseveld H W, Westerhoff H V, Teusink B

机构信息

Department of Molecular Cell Physiology, BioCentrum Amsterdam, Faculty of Biology, Vrije Universiteit, NL-1081 HV Amsterdam, The Netherlands.

出版信息

Biophys J. 2001 Feb;80(2):626-34. doi: 10.1016/S0006-3495(01)76043-2.

Abstract

It is becoming accepted that steady-state fluxes are not necessarily controlled by single rate-limiting steps. This leaves open the issue whether cellular dynamics are controlled by single pacemaker enzymes, as has often been proposed. This paper shows that yeast sugar transport has substantial but not complete control of the frequency of glycolytic oscillations. Addition of maltose, a competitive inhibitor of glucose transport, reduced both average glucose consumption flux and frequency of glycolytic oscillations. Assuming a single kinetic component and a symmetrical carrier, a frequency control coefficient of between 0.4 and 0.6 and an average-flux control coefficient of between 0.6 and 0.9 were calculated for hexose transport activity. In a second approach, mannose was used as the carbon and free-energy source, and the dependencies on the extracellular mannose concentration of the transport activity, of the frequency of oscillations, and of the average flux were compared. In this case the frequency control coefficient and the average-flux control coefficient of hexose transport activity amounted to 0.7 and 0.9, respectively. From these results, we conclude that 1) transport is highly important for the dynamics of glycolysis, 2) most but not all control resides in glucose transport, and 3) there should at least be one step other than transport with substantial control.

摘要

稳态通量不一定由单一限速步骤控制,这一点已逐渐被人们所接受。这使得细胞动力学是否如经常所提出的那样由单一的起搏酶控制这一问题悬而未决。本文表明酵母糖转运对糖酵解振荡频率具有显著但并非完全的控制作用。添加麦芽糖(一种葡萄糖转运的竞争性抑制剂)会降低平均葡萄糖消耗通量以及糖酵解振荡频率。假设存在单一动力学成分和对称载体,计算得出己糖转运活性的频率控制系数在0.4至0.6之间,平均通量控制系数在0.6至0.9之间。在第二种方法中,使用甘露糖作为碳源和自由能来源,并比较了转运活性、振荡频率和平均通量对细胞外甘露糖浓度的依赖性。在这种情况下,己糖转运活性的频率控制系数和平均通量控制系数分别为0.7和0.9。从这些结果中,我们得出以下结论:1)转运对于糖酵解动力学非常重要;2)大部分但并非全部的控制作用存在于葡萄糖转运中;3)除了转运之外,至少还应有一个具有显著控制作用的步骤。

相似文献

1
Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae.
Biophys J. 2001 Feb;80(2):626-34. doi: 10.1016/S0006-3495(01)76043-2.
2
Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus.
Microbiology (Reading). 1999 Dec;145 ( Pt 12):3447-3454. doi: 10.1099/00221287-145-12-3447.
3
Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2004 Sep;70(9):5323-30. doi: 10.1128/AEM.70.9.5323-5330.2004.
5
Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis.
Eur J Biochem. 2002 Aug;269(16):3894-904. doi: 10.1046/j.1432-1033.2002.03055.x.
6
Impairment by hexoses of the utilization of maltose by Saccharomyces cerevisiae.
Biochim Biophys Acta. 1998 Sep 16;1425(1):151-8. doi: 10.1016/s0304-4165(98)00064-6.
9
From steady-state to synchronized yeast glycolytic oscillations II: model validation.
FEBS J. 2012 Aug;279(16):2823-36. doi: 10.1111/j.1742-4658.2012.08658.x. Epub 2012 Jul 5.
10
Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei.
Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10098-103. doi: 10.1073/pnas.96.18.10098.

引用本文的文献

2
Dynamic fluctuations in a bacterial metabolic network.
Nat Commun. 2023 Apr 15;14(1):2173. doi: 10.1038/s41467-023-37957-0.
3
Limited Mechanistic Link Between the Monod Equation and Methanogen Growth: a Perspective from Metabolic Modeling.
Microbiol Spectr. 2022 Apr 27;10(2):e0225921. doi: 10.1128/spectrum.02259-21. Epub 2022 Mar 3.
4
Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking.
Comput Struct Biotechnol J. 2021 Mar 19;19:1713-1737. doi: 10.1016/j.csbj.2021.03.013. eCollection 2021.
5
A yeast FRET biosensor enlightens cAMP signaling.
Mol Biol Cell. 2021 Jun 15;32(13):1229-1240. doi: 10.1091/mbc.E20-05-0319. Epub 2021 Apr 21.
8

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
DAMPED SINUSOIDAL OSCILLATIONS OF CYTOPLASMIC REDUCED PYRIDINE NUCLEOTIDE IN YEAST CELLS.
Proc Natl Acad Sci U S A. 1964 Jun;51(6):1244-51. doi: 10.1073/pnas.51.6.1244.
3
Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry.
Eur J Biochem. 2000 Sep;267(17):5313-29. doi: 10.1046/j.1432-1327.2000.01527.x.
4
The genome sequence of Drosophila melanogaster.
Science. 2000 Mar 24;287(5461):2185-95. doi: 10.1126/science.287.5461.2185.
6
How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment.
Biophys J. 2000 Mar;78(3):1087-93. doi: 10.1016/S0006-3495(00)76667-7.
7
Kinetic analysis of a molecular model of the budding yeast cell cycle.
Mol Biol Cell. 2000 Jan;11(1):369-91. doi: 10.1091/mbc.11.1.369.
8
Strategies to determine the extent of control exerted by glucose transport on glycolytic flux in the yeast Saccharomyces bayanus.
Microbiology (Reading). 1999 Dec;145 ( Pt 12):3447-3454. doi: 10.1099/00221287-145-12-3447.
9
Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei.
Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10098-103. doi: 10.1073/pnas.96.18.10098.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验