Tetko I V, Villa A E
Laboratoire de Neuro-heuristique, Institut de Physiologie, Université de Lausanne, Rue du Bugnon 7, CH-1005, Lausanne, Switzerland.
J Neurosci Methods. 2001 Jan 30;105(1):1-14. doi: 10.1016/s0165-0270(00)00336-8.
The existence of precise temporal relations in sequences of spike intervals, referred to as 'spatiotemporal patterns', is suggested by brain theories that emphasize the role of temporal coding. Specific analytical methods able to assess the significance of such patterned activity are extremely important to establish its function for information processing in the brain. This study proposes a new method called 'pattern grouping algorithm' (PGA), designed to identify and evaluate the statistical significance of patterns which differ from each other by a defined and small jitter in spike timing of the order of few ms. The algorithm performs a pre-selection of template patterns with a fast computational approach, optimizes the jitter for each spike in the template and evaluates the statistical significance of the pattern group using three complementary statistical approaches. Simulated data sets characterized by various types of known non stationarities are used for validation of PGA and for comparison of its performance to other methods. Applications of PGA to experimental data sets of simultaneously recorded spike trains are described in a companion paper (Tetko IV, Villa AEP. A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 2. Application to simultaneous single unit recordings. J Neurosci Method 2000; accompanying article).
被称为“时空模式”的尖峰间隔序列中精确时间关系的存在,是由强调时间编码作用的脑理论所提出的。能够评估此类模式化活动重要性的特定分析方法,对于确定其在大脑信息处理中的功能极为重要。本研究提出了一种名为“模式分组算法”(PGA)的新方法,旨在识别和评估那些在几毫秒量级的尖峰时间上存在定义明确且微小抖动差异的模式的统计显著性。该算法通过快速计算方法对模板模式进行预选,为模板中的每个尖峰优化抖动,并使用三种互补的统计方法评估模式组的统计显著性。具有各种已知非平稳性类型的模拟数据集用于PGA的验证以及其与其他方法性能的比较。PGA在同时记录的尖峰序列实验数据集上的应用在一篇配套论文中进行了描述(Tetko IV,Villa AEP。一种用于分析神经元尖峰序列中时空模式的模式分组算法。2. 应用于同时单单元记录。《神经科学方法杂志》2000年;配套文章)。