Suppr超能文献

为消费者创建更有效的健康计划质量报告:定性测试综合分析的经验教训

Creating more effective health plan quality reports for consumers: lessons from a synthesis of qualitative testing.

作者信息

Harris-Kojetin L D, McCormack L A, Jaël E F, Sangl J A, Garfinkel S A

机构信息

Research Triangle Institute, Washington, DC 20036, USA.

出版信息

Health Serv Res. 2001 Jul;36(3):447-76.

Abstract

OBJECTIVE

Social marketing techniques such as consumer testing have only recently been applied to develop effective consumer health insurance information. This article discusses lessons learned from consumer testing to create consumer plan choice materials.

DATA SOURCES/STUDY SETTING: Data were collected from 268 publicly and privately insured consumers in three studies between 1994 and 1999.

STUDY DESIGN

Iterative testing and revisions were conducted to design seven booklets to help Medicaid, Medicare, and employed consumers choose a health plan.

DATA COLLECTION METHODS

Standardized protocols were used in 11 focus groups and 182 interviews to examine the content, comprehension, navigation, and utility of the booklets.

PRINCIPAL FINDINGS

A method is suggested to help consumers narrow their plan choices by breaking down the process into smaller decisions using a set of guided worksheets.

CONCLUSION

Implementing these lessons is challenging and not often done well. This article gives examples of evidence-based approaches to address cognitive barriers that designers of consumer health insurance information can adapt to their needs.

摘要

目标

诸如消费者测试等社会营销技巧直到最近才被应用于开发有效的消费者健康保险信息。本文讨论了从消费者测试中获得的经验教训,以创建消费者计划选择材料。

数据来源/研究背景:在1994年至1999年期间的三项研究中,从268名参加公共和私人保险的消费者那里收集了数据。

研究设计

进行了反复测试和修订,以设计七本手册,帮助医疗补助、医疗保险和就业消费者选择健康计划。

数据收集方法

在11个焦点小组和182次访谈中使用标准化方案,以检查手册的内容、理解、导航和实用性。

主要发现

建议采用一种方法,通过使用一组指导性工作表将流程分解为更小的决策,来帮助消费者缩小其计划选择范围。

结论

实施这些经验教训具有挑战性,而且往往做得不好。本文给出了基于证据的方法示例,以解决消费者健康保险信息设计者可根据自身需求加以调整的认知障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92b8/1089237/46c5ddb81a3c/hsresearch00004-0024-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验