Suppr超能文献

链球菌溶血素O对红细胞膜、脂质体和脂质分散体的作用。一种蛋白质 - 胆固醇相互作用。

Effect of streptolysin O on erythrocyte membranes, liposomes, and lipid dispersions. A protein-cholesterol interaction.

作者信息

Duncan J L, Schlegel R

出版信息

J Cell Biol. 1975 Oct;67(1):160-74. doi: 10.1083/jcb.67.1.160.

Abstract

The effect of the bacterial cytolytic toxin, streptolysin O (SLO), on rabbit erythrocyte membranes, liposomes, and lipid dispersions was examined. SLO produced no gross alterations in the major erythrocyte membrane proteins or lipids. However, when erythrocytes were treated with SLO and examined by electron microscopy, rings and "C"-shaped structures were observed in the cell membrane. The rings had an electron-dense center, 24 nm in diameter, and the overall diameter of the structure was 38 nm. Ring formation also occurred when erythrocyte membranes were fixed with glutaraldehyde and OsO4 before the addition of toxin. In contrast, rings were not seen when erythrocytes were treated with toxin at 0 degrees C, indicating that adsorption of SLO to the membrane is not sufficient for ring formation since toxin is known to bind to erythrocytes at that temperature. The ring structures were present on lecithin-cholesterol-dicetylphosphate liposomes after SLO treatment, but there was no release of the trapped, internal markers, K2CrO4 or glucose. The crucial role of cholesterol in the formation of rings and C's was demonstrated by the fact that these structures were present in toxin-treated cholesterol dispersions, but not in lecithin-dicetylphosphate dispersions nor in the SLO preparations alone. The importance of cholesterol was also shown by the finding that no rings were present in membranes or cholesterol dispersions which had been treated with digitonin before SLO was added. Although rings do not appear to be "holes" in the membrane, a model is proposed which suggests that cholesterol molecules are sequestered during ring and C-structure formation, and that this process plays a role in SLO-induced hemolysis.

摘要

研究了细菌溶细胞毒素——链球菌溶血素O(SLO)对兔红细胞膜、脂质体和脂质分散体的作用。SLO未使主要的红细胞膜蛋白或脂质发生明显改变。然而,当用SLO处理红细胞并通过电子显微镜检查时,在细胞膜中观察到了环状和“C”形结构。这些环有一个电子致密的中心,直径为24纳米,结构的总直径为38纳米。在添加毒素之前,用戊二醛和四氧化锇固定红细胞膜时也会出现环的形成。相比之下,在0℃用毒素处理红细胞时未观察到环,这表明SLO吸附到膜上不足以形成环,因为已知毒素在该温度下会与红细胞结合。SLO处理后,卵磷脂 - 胆固醇 - 二鲸蜡基磷酸脂质体上存在环状结构,但没有释放被困在内部的标记物重铬酸钾或葡萄糖。胆固醇在环和“C”形结构形成中的关键作用通过以下事实得以证明:这些结构存在于毒素处理过的胆固醇分散体中,但不存在于卵磷脂 - 二鲸蜡基磷酸分散体中,也不存在于单独的SLO制剂中。在添加SLO之前用洋地黄皂苷处理过的膜或胆固醇分散体中不存在环这一发现也表明了胆固醇的重要性。尽管环似乎不是膜上的“孔”,但提出了一个模型,该模型表明胆固醇分子在环和C结构形成过程中被隔离,并且这一过程在SLO诱导的溶血中起作用。

相似文献

2
A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane.
J Bacteriol. 1993 Sep;175(18):5953-61. doi: 10.1128/jb.175.18.5953-5961.1993.
3
Effect of streptolysin O and digitonin on egg lecithin/cholesterol vesicles.
Biochim Biophys Acta. 1980 Jul 16;600(1):91-102. doi: 10.1016/0005-2736(80)90414-9.
4
Ultrastructural analysis of the membrane insertion of domain 3 of streptolysin O.
Microbes Infect. 2007 Sep;9(11):1341-50. doi: 10.1016/j.micinf.2007.06.010. Epub 2007 Jul 2.
6
Mechanism of membrane damage by streptolysin-O.
Infect Immun. 1985 Jan;47(1):52-60. doi: 10.1128/iai.47.1.52-60.1985.
7
Alteration by cereolysin of the structure of cholesterol-containing membranes.
Biochim Biophys Acta. 1978 Feb 21;507(2):230-41. doi: 10.1016/0005-2736(78)90419-4.
8
[Mechanism of pore formation on erythrocyte membrane by streptolysin-O].
Kansenshogaku Zasshi. 1993 Aug;67(8):736-40. doi: 10.11150/kansenshogakuzasshi1970.67.736.
9
Electron microscopic evaluation of a two-step theory of pore formation by streptolysin O.
J Bacteriol. 1996 Dec;178(23):6998-7002. doi: 10.1128/jb.178.23.6998-7002.1996.

引用本文的文献

1
Streptolysin O accelerates the conversion of plasminogen to plasmin.
Nat Commun. 2024 Nov 25;15(1):10212. doi: 10.1038/s41467-024-54173-6.
2
Cholesterol-dependent cytolysins: The outstanding questions.
IUBMB Life. 2022 Dec;74(12):1169-1179. doi: 10.1002/iub.2661. Epub 2022 Jul 14.
3
Molecular Mechanisms of Mast Cell Activation by Cholesterol-Dependent Cytolysins.
Front Immunol. 2021 Jun 23;12:670205. doi: 10.3389/fimmu.2021.670205. eCollection 2021.
4
Mammalian membrane trafficking as seen through the lens of bacterial toxins.
Cell Microbiol. 2020 Apr;22(4):e13167. doi: 10.1111/cmi.13167.
6
Self-repairing cells: How single cells heal membrane ruptures and restore lost structures.
Science. 2017 Jun 9;356(6342):1022-1025. doi: 10.1126/science.aam6496.
7
Perforin Promotes Amyloid Beta Internalisation in Neurons.
Mol Neurobiol. 2017 Mar;54(2):874-887. doi: 10.1007/s12035-016-9685-9. Epub 2016 Jan 16.
9
Engineered nanoparticles mimicking cell membranes for toxin neutralization.
Adv Drug Deliv Rev. 2015 Aug 1;90:69-80. doi: 10.1016/j.addr.2015.04.001. Epub 2015 Apr 11.
10
Protein arcs may form stable pores in lipid membranes.
Biophys J. 2014 Jan 7;106(1):154-61. doi: 10.1016/j.bpj.2013.11.4490.

本文引用的文献

1
Electron microscopic observations on Rous sarcoma virus and cell membranes.
Nature. 1962 Jun 23;194:1116-9. doi: 10.1038/1941116a0.
4
Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction.
Biochim Biophys Acta. 1968 Apr 29;150(3):333-40. doi: 10.1016/0005-2736(68)90132-6.
5
Streptolysin O: sedimentation coefficient and molecular weight determinations.
J Bacteriol. 1969 Oct;100(1):526-7. doi: 10.1128/jb.100.1.526-527.1969.
6
Morphologic changes in the membranes of red blood cells undergoing hemolysis.
Am J Med. 1966 Nov;41(5):699-710. doi: 10.1016/0002-9343(66)90031-3.
7
Streptolysin O induced alterations in rabbit erythrocyte membrane polypeptides.
Biochem Biophys Res Commun. 1972 Sep 26;48(6):1339-47. doi: 10.1016/0006-291x(72)90859-5.
9
Cross-linking the major proteins of the isolated erythrocyte membrane.
J Mol Biol. 1972 May 14;66(2):295-305. doi: 10.1016/0022-2836(72)90481-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验