Suppr超能文献

针对脑成像数据的精确多变量检验。

Exact multivariate tests for brain imaging data.

作者信息

Almeida Rita, Ledberg Anders

机构信息

Division of Human Brain Research, Department of Neuroscience A3:3, Karolinska Institute, Retzius väg 8, 17177 Stockholm, Sweden.

出版信息

Hum Brain Mapp. 2002 May;16(1):24-35. doi: 10.1002/hbm.10025.

Abstract

In positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) data sets, the number of variables is larger than the number of observations. This fact makes application of multivariate linear model analysis difficult, except if a reduction of the data matrix dimension is performed prior to the analysis. The reduced data set, however, will in general not be normally distributed and therefore, the usual multivariate tests will not be necessarily applicable. This problem has not been adequately discussed in the literature concerning multivariate linear analysis of brain imaging data. No theoretical foundation has been given to support that the null distributions of the tests are as claimed. Our study addresses this issue by introducing a method of constructing test statistics that follow the same distributions as when the data matrix is normally distributed. The method is based on the invariance of certain tests over a large class of distributions of the data matrix. This implies that the method is very general and can be applied for different reductions of the data matrix. As an illustration we apply a test statistic constructed by the method now presented to test a multivariate hypothesis on a PET data set. The test rejects the null hypothesis of no significant differences in measured brain activity between two conditions. The effect responsible for the rejection of the hypothesis is characterized using canonical variate analysis (CVA) and compared with the result obtained by using univariate regression analysis for each voxel and statistical inference based on size of activations. The results obtained from CVA and the univariate method are similar.

摘要

在正电子发射断层扫描(PET)和功能磁共振成像(fMRI)数据集中,变量的数量大于观测值的数量。这一事实使得多元线性模型分析难以应用,除非在分析之前对数据矩阵进行降维。然而,降维后的数据集通常不会呈正态分布,因此,通常的多元检验不一定适用。在有关脑成像数据多元线性分析的文献中,这个问题尚未得到充分讨论。也没有给出理论依据来支持检验的零分布如所声称的那样。我们的研究通过引入一种构建检验统计量的方法来解决这个问题,该方法所遵循的分布与数据矩阵呈正态分布时相同。该方法基于某些检验在一大类数据矩阵分布上的不变性。这意味着该方法非常通用,可应用于数据矩阵的不同降维情况。作为一个示例,我们应用现在提出的方法构建的检验统计量来检验PET数据集上的一个多元假设。该检验拒绝了两种条件下测量的脑活动无显著差异的零假设。使用典型变量分析(CVA)对导致拒绝假设的效应进行了表征,并与通过对每个体素使用单变量回归分析和基于激活大小的统计推断所获得的结果进行了比较。从CVA和单变量方法获得的结果相似。

相似文献

1
Exact multivariate tests for brain imaging data.
Hum Brain Mapp. 2002 May;16(1):24-35. doi: 10.1002/hbm.10025.
2
Characterizing the response of PET and fMRI data using multivariate linear models.
Neuroimage. 1997 Nov;6(4):305-19. doi: 10.1006/nimg.1997.0294.
3
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Neuroimage. 2018 Jul 1;174:111-126. doi: 10.1016/j.neuroimage.2018.02.060. Epub 2018 Mar 7.
4
Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
Magn Reson Imaging. 2009 Feb;27(2):264-78. doi: 10.1016/j.mri.2008.05.021. Epub 2008 Oct 11.
5
Nonparametric permutation tests for functional neuroimaging: a primer with examples.
Hum Brain Mapp. 2002 Jan;15(1):1-25. doi: 10.1002/hbm.1058.
6
Support vector machine learning-based fMRI data group analysis.
Neuroimage. 2007 Jul 15;36(4):1139-51. doi: 10.1016/j.neuroimage.2007.03.072. Epub 2007 Apr 27.
7
Multivariate group-level analysis for task fMRI data with canonical correlation analysis.
Neuroimage. 2019 Jul 1;194:25-41. doi: 10.1016/j.neuroimage.2019.03.030. Epub 2019 Mar 17.
9
Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
Neuroimage. 2008 Oct 15;43(1):44-58. doi: 10.1016/j.neuroimage.2008.06.037. Epub 2008 Jul 11.
10
Iterative Principal Axes Registration method for analysis of MR-PET brain images.
IEEE Trans Biomed Eng. 1995 Nov;42(11):1079-87. doi: 10.1109/10.469374.

引用本文的文献

2
A forward application of age associated gray and white matter networks.
Hum Brain Mapp. 2008 Oct;29(10):1139-46. doi: 10.1002/hbm.20452.

本文引用的文献

1
Human brain atlas: For high-resolution functional and anatomical mapping.
Hum Brain Mapp. 1994;1(3):173-84. doi: 10.1002/hbm.460010303.
2
An overview and some new developments in the statistical analysis of PET and fMRI data.
Hum Brain Mapp. 1997;5(4):254-8. doi: 10.1002/(SICI)1097-0193(1997)5:4<254::AID-HBM9>3.0.CO;2-2.
3
A multivariate analysis of PET activation studies.
Hum Brain Mapp. 1996;4(2):140-51. doi: 10.1002/(SICI)1097-0193(1996)4:2<140::AID-HBM5>3.0.CO;2-3.
4
A 4D approach to the analysis of functional brain images: application to FMRI data.
Hum Brain Mapp. 2001 Aug;13(4):185-98. doi: 10.1002/hbm.1032.
5
Robust estimation of the probabilities of 3-D clusters in functional brain images: application to PET data.
Hum Brain Mapp. 2000 Mar;9(3):143-55. doi: 10.1002/(sici)1097-0193(200003)9:3<143::aid-hbm3>3.0.co;2-2.
6
Statistical limitations in functional neuroimaging. II. Signal detection and statistical inference.
Philos Trans R Soc Lond B Biol Sci. 1999 Jul 29;354(1387):1261-81. doi: 10.1098/rstb.1999.0478.
7
Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models.
Philos Trans R Soc Lond B Biol Sci. 1999 Jul 29;354(1387):1239-60. doi: 10.1098/rstb.1999.0477.
8
Plurality and resemblance in fMRI data analysis.
Neuroimage. 1999 Sep;10(3 Pt 1):282-303. doi: 10.1006/nimg.1999.0472.
9
Convergence of neural systems processing stimulus associations and coordinating motor responses.
Cereb Cortex. 1998 Oct-Nov;8(7):648-59. doi: 10.1093/cercor/8.7.648.
10
Characterizing the response of PET and fMRI data using multivariate linear models.
Neuroimage. 1997 Nov;6(4):305-19. doi: 10.1006/nimg.1997.0294.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验