Ogliaro François, de Visser Sam P, Cohen Shimrit, Sharma Pankaz K, Shaik Sason
Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, Hebrew University, 91904 Jerusalem.
J Am Chem Soc. 2002 Mar 20;124(11):2806-17. doi: 10.1021/ja0171963.
Iron(III)-hydroperoxo, Por(CysS)Fe(III)-OOH, a key species in the catalytic cycle of cytochrome P450, was recently identified by EPR/ENDOR spectroscopies (Davydov, R.; Makris, T. M.; Kofman, V.; Werst, D. E.; Sligar, S. G.; Hoffman, B. M. J. Am. Chem. Soc. 2001, 123, 1403-1415). It constitutes the last station of the preparative steps of the enzyme before oxidation of an organic compound and is implicated as the second oxidant capable of olefin epoxidation (Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555-3560), in addition to the penultimate active species, Compound I (Groves, J. T.; Han, Y.-Z. In Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; pp 3-48). In response, we present a density functional study of a model species and its ethylene epoxidation pathways. The study characterizes a variety of properties of iron(III)-hydroperoxo, such as the O-O bonding, the Fe-S bonding, Fe-O and Fe-S stretching frequencies, its electron attachment, and ionization energies. Wherever possible these properties are compared with those of Compound I. The proton affinities for protonation on the proximal and distal oxygen atoms of iron(III)-hydroperoxo, and the effect of the thiolate ligand thereof, are determined. In accordance with previous results (Harris, D. L.; Loew, G. H. J. Am. Chem. Soc. 1998, 120, 8941-8948), iron(III)-hydroperoxo is a strong base (as compared with water), and its distal protonation leads to a barrier-free formation of Compound I. The origins of this barrier-free process are discussed using a valence bond approach. It is shown that the presence of the thiolate is essential for this process, in line with the "push effect" deduced by experimentalists (Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev. 1996, 96, 2841-2887). Finally, four epoxidation pathways of iron(III)-hydroxperoxo are located, in which the species transfers oxygen to ethylene either from the proximal or from the distal sites, in both concerted and stepwise manners. The barriers for the four mechanisms are 37-53 kcal/mol, in comparison with 14 kcal/mol for epoxidation by Compound I. It is therefore concluded that iron(III)-hydroperoxo, as such, cannot be a second oxidant, in line with its significant basicity and poor electron-accepting capability. Possible versions of a second oxidant are discussed.
铁(III)-氢过氧根离子[Por(CysS)Fe(III)-OOH]⁻是细胞色素P450催化循环中的关键物种,最近通过电子顺磁共振/电子核双共振光谱法得以鉴定(达维多夫,R.;马克里斯,T.M.;科夫曼,V.;韦斯特,D.E.;斯利加,S.G.;霍夫曼,B.M.《美国化学会志》2001年,123卷,1403 - 1415页)。它是该酶在氧化有机化合物之前制备步骤的最后一站,并且被认为是除了倒数第二个活性物种化合物I之外,能够进行烯烃环氧化的第二种氧化剂(瓦斯,A.D.N.;麦金蒂,D.F.;库恩,M.J.《美国国家科学院院刊》1998年,95卷,3555 - 3560页)。化合物I(格罗夫斯,J.T.;韩,Y.-Z.《细胞色素P450:结构、机制与生物化学》第2版;奥尔蒂斯·德·蒙特利亚诺,P.R.编;普伦纽姆出版社:纽约,1995年;第3 - 48页)。对此,我们对一个模型物种及其乙烯环氧化途径进行了密度泛函研究。该研究表征了铁(III)-氢过氧根离子的多种性质,如O - O键、Fe - S键、Fe - O和Fe - S伸缩频率、其电子附着和电离能。只要有可能,就将这些性质与化合物I的性质进行比较。确定了铁(III)-氢过氧根离子近端和远端氧原子质子化的质子亲和力及其硫醇盐配体的影响。与先前的结果一致(哈里斯,D.L.;洛,G.H.《美国化学会志》1998年,120卷,8941 - 8948页),铁(III)-氢过氧根离子是一种强碱(与水相比),其远端质子化导致无势垒地形成化合物I。使用价键方法讨论了这个无势垒过程的起源。结果表明,硫醇盐的存在对这个过程至关重要,这与实验人员推断的“推动效应”一致(索诺,M.;罗奇,M.P.;库尔特,E.D.;道森,J.H.《化学评论》1996年,96卷,2841 - 2887页)。最后,找到了铁(III)-氢过氧根离子的四条环氧化途径,其中该物种以协同和逐步的方式从近端或远端位点将氧转移到乙烯上。这四种机制的势垒为37 - 53千卡/摩尔,而化合物I进行环氧化的势垒为14千卡/摩尔。因此得出结论,铁(III)-氢过氧根离子本身不能作为第二种氧化剂,这与其显著的碱性和较差的电子接受能力相符。讨论了第二种氧化剂的可能形式。