Suppr超能文献

刺激-反应兼容性对大脑激活的局部效应揭示人类反应选择的神经机制

Neural implementation of response selection in humans as revealed by localized effects of stimulus-response compatibility on brain activation.

作者信息

Schumacher Eric H, D'Esposito Mark

机构信息

Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California 94720-1650, USA.

出版信息

Hum Brain Mapp. 2002 Nov;17(3):193-201. doi: 10.1002/hbm.10063.

Abstract

Response selection, which involves choosing representations for appropriate motor behaviors given one's current situation, is a fundamental mental process central to a wide variety of human performance, yet the neural mechanisms underlying this mental process remain unclear. Research using nonhuman primates implicates ventral prefrontal and lateral premotor cortices in this process. In contrast, human neuroimaging research also highlights the role of dorsal prefrontal, anterior cingulate, and superior parietal cortices in response selection. This inconsistency may stem from the difficulty of isolating response selection within the constraints of cognitive subtraction methodology utilized in neuroimaging. We overcome this limitation by using an experimental procedure designed to selectively influence discrete mental processing stages and analyses that are less reliant on the assumptions of cognitive subtraction. We varied stimulus contrast to affect stimulus encoding and stimulus-response compatibility to affect response selection. Brain activation data suggest processing specific to response selection in superior parietal and dorsal prefrontal cortices, and not ventral prefrontal cortex. Anterior cingulate and lateral premotor cortices may also be involved in response selection, or these regions may mediate other response processes.

摘要

反应选择涉及根据个体当前状况为适当的运动行为选择表征,是广泛的人类行为所核心的基本心理过程,然而这一心理过程背后的神经机制仍不清楚。使用非人类灵长类动物的研究表明腹侧前额叶和外侧运动前皮层参与了这一过程。相比之下,人类神经影像学研究也强调了背侧前额叶、前扣带回和顶上叶皮层在反应选择中的作用。这种不一致可能源于在神经影像学中使用的认知减法方法的限制内分离反应选择的困难。我们通过使用一种实验程序来克服这一限制,该程序旨在选择性地影响离散的心理加工阶段,并进行较少依赖认知减法假设的分析。我们改变刺激对比度以影响刺激编码,并改变刺激-反应兼容性以影响反应选择。脑激活数据表明,顶上叶和背侧前额叶皮层存在特定于反应选择的加工,而腹侧前额叶皮层则没有。前扣带回和外侧运动前皮层也可能参与反应选择,或者这些区域可能介导其他反应过程。

相似文献

4
Neural evidence for representation-specific response selection.
J Cogn Neurosci. 2003 Nov 15;15(8):1111-21. doi: 10.1162/089892903322598085.
5
Neural evidence of a role for spatial response selection in the learning of spatial sequences.
Brain Res. 2009 Jan 9;1247:114-25. doi: 10.1016/j.brainres.2008.09.097. Epub 2008 Oct 17.
6
Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.
J Neuroradiol. 2013 Oct;40(4):267-80. doi: 10.1016/j.neurad.2012.10.001. Epub 2013 Feb 21.
7
Common and unique components of response inhibition revealed by fMRI.
Neuroimage. 2005 Aug 15;27(2):323-40. doi: 10.1016/j.neuroimage.2005.01.054.
8
The "when" and "where" of the interplay between attentional capture and response inhibition during a Go/NoGo variant.
Neuroimage. 2021 May 1;231:117837. doi: 10.1016/j.neuroimage.2021.117837. Epub 2021 Feb 9.
9
Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task.
Brain Res. 2006 Apr 7;1081(1):179-90. doi: 10.1016/j.brainres.2006.01.103. Epub 2006 Mar 13.
10
Contributions of the parietal cortex to increased efficiency of planning-based action selection.
Neuropsychologia. 2017 Oct;105:135-143. doi: 10.1016/j.neuropsychologia.2017.04.024. Epub 2017 Apr 22.

引用本文的文献

1
Layer-dependent activity in human prefrontal cortex during working memory.
Nat Neurosci. 2019 Oct;22(10):1687-1695. doi: 10.1038/s41593-019-0487-z. Epub 2019 Sep 23.
3
Cortical and subcortical contributions to context-control learning.
Neurosci Biobehav Rev. 2019 Apr;99:33-41. doi: 10.1016/j.neubiorev.2019.01.019. Epub 2019 Jan 24.
4
Critical brain regions for tool-related and imitative actions: a componential analysis.
Brain. 2014 Jul;137(Pt 7):1971-85. doi: 10.1093/brain/awu111. Epub 2014 Apr 27.
6
Control of automated behavior: insights from the discrete sequence production task.
Front Hum Neurosci. 2013 Mar 19;7:82. doi: 10.3389/fnhum.2013.00082. eCollection 2013.
7
Both memory and attention systems contribute to visual search for targets cued by implicitly learned context.
Vision Res. 2013 Jun 7;85:80-9. doi: 10.1016/j.visres.2012.10.006. Epub 2012 Oct 23.
8
Uncertainty and cognitive control.
Front Psychol. 2011 Sep 3;2:249. doi: 10.3389/fpsyg.2011.00249. eCollection 2011.
9
Investigating the modality specificity of response selection using a temporal flanker task.
Psychol Res. 2011 Nov;75(6):499-512. doi: 10.1007/s00426-011-0369-9. Epub 2011 Aug 28.

本文引用的文献

1
Functional MRI of macaque monkeys performing a cognitive set-shifting task.
Science. 2002 Feb 22;295(5559):1532-6. doi: 10.1126/science.1067653.
2
Learning arbitrary visuomotor associations: temporal dynamic of brain activity.
Neuroimage. 2001 Nov;14(5):1048-57. doi: 10.1006/nimg.2001.0894.
3
Separate modifiability, mental modules, and the use of pure and composite measures to reveal them.
Acta Psychol (Amst). 2001 Jan;106(1-2):147-246. doi: 10.1016/s0001-6918(00)00045-7.
5
The effect of stimulus-response compatibility on cortical motor activation.
Neuroimage. 2001 Jan;13(1):1-14. doi: 10.1006/nimg.2000.0671.
6
How to avoid the fallacies of cognitive subtraction in brain imaging.
Brain Lang. 2000 Sep;74(2):191-212. doi: 10.1006/brln.2000.2334.
7
Role of prefrontal cortex in a network for arbitrary visuomotor mapping.
Exp Brain Res. 2000 Jul;133(1):114-29. doi: 10.1007/s002210000406.
8
9
Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control.
Science. 2000 Jun 9;288(5472):1835-8. doi: 10.1126/science.288.5472.1835.
10
The prefrontal cortex: response selection or maintenance within working memory?
Science. 2000 Jun 2;288(5471):1656-60. doi: 10.1126/science.288.5471.1656.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验