Suppr超能文献

一种用于腕部运动的肌肉募集计算模型。

A computational model of muscle recruitment for wrist movements.

作者信息

Fagg Andrew H, Shah Ashvin, Barto Andrew G

机构信息

Department of Computer Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.

出版信息

J Neurophysiol. 2002 Dec;88(6):3348-58. doi: 10.1152/jn.00621.2002.

Abstract

To execute a movement, the CNS must appropriately select and activate the set of muscles that will produce the desired movement. This problem is particularly difficult because a variety of muscle subsets can usually be used to produce the same joint motion. The motor system is therefore faced with a motor redundancy problem that must be resolved to produce the movement. In this paper, we present a model of muscle recruitment in the wrist step-tracking task. Muscle activation levels for five muscles are selected so as to satisfy task constraints (moving to the designated target) while also minimizing a measure of the total effort in producing the movement. Imposing these constraints yields muscle activation patterns qualitatively similar to those observed experimentally. In particular, the model reproduces the observed cosine-like recruitment of muscles as a function of movement direction and also appropriately predicts that certain muscles will be recruited most strongly in movement directions that differ significantly from their direction of action. These results suggest that the observed recruitment behavior may not be an explicit strategy employed by the nervous system, but instead may result from a process of movement optimization.

摘要

为了执行一个动作,中枢神经系统(CNS)必须适当地选择并激活一组能够产生所需动作的肌肉。这个问题特别困难,因为通常可以使用多种不同的肌肉组合来产生相同的关节运动。因此,运动系统面临着一个运动冗余问题,必须解决这个问题才能产生动作。在本文中,我们提出了一个在手腕步进跟踪任务中的肌肉募集模型。选择五块肌肉的激活水平,以便在满足任务约束(移动到指定目标)的同时,还能尽量减少产生该动作所需的总努力程度。施加这些约束会产生与实验观察到的肌肉激活模式在性质上相似的结果。特别是,该模型再现了观察到的肌肉募集与运动方向呈余弦样关系,并且还能适当地预测,在与某些肌肉的作用方向显著不同的运动方向上,这些肌肉将被最强烈地募集。这些结果表明,观察到的募集行为可能不是神经系统采用的一种明确策略,而是可能源于运动优化过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验