Zhang Jian, Schneider Colette, Ottmers Lisa, Rodriguez Robert, Day Audra, Markwardt Jody, Schneider Brandt L
Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
Curr Biol. 2002 Dec 10;12(23):1992-2001. doi: 10.1016/s0960-9822(02)01305-2.
In most eukaryotic cells, there is a relationship between cell size and proliferative capacity. For example, in order to commit to cell division, the yeast Saccharomyces cerevisiae must attain a "critical cell size." This mechanism coordinates growth with cell division to maintain cell size homeostasis. Because very few cell size control genes are known, the genetic pathways responsible for cell size homeostasis remain obscure. Furthermore, elucidation of the mechanism of cell size homeostasis has been recalcitrant to genetic analysis primarily due to the difficulty in cloning cell size control genes.
To identify new size control genes, the effect of 5958 single gene deletions (4792 homozygous and 1166 heterozygous gene deletions) on cell size in yeast grown to saturation was systematically determined. From these data, 49 genes were identified that dramatically altered cell size. Of these, 34 are involved in transcription, signal transduction, or cell cycle control; 88% of these genes have putative human homologs. Sixteen genes regulate cell size in a dosage-dependent manner, and the majority of mutants identified fail to correctly exit the cell cycle. Many of these genes are components of Ccr4-Not transcriptional complexes or function in the PKC-MAP kinase pathway. These genes may modulate cell size by altering the expression or activity of G1-phase cyclins.
These results illustrate how systematic genetic screens can be used to dissect intricate biological processes that are refractory to classic genetic approaches. This genomic-wide genetic screen yielded 46 new cell size mutants and systematically assessed the effect of 5958 single gene deletions on cell size as cells exited the cell cycle.
在大多数真核细胞中,细胞大小与增殖能力之间存在关联。例如,酿酒酵母要进行细胞分裂,必须达到“临界细胞大小”。这种机制将生长与细胞分裂协调起来以维持细胞大小的稳态。由于已知的细胞大小控制基因极少,负责细胞大小稳态的遗传途径仍不清楚。此外,主要由于克隆细胞大小控制基因存在困难,细胞大小稳态机制的阐明一直难以通过遗传分析实现。
为了鉴定新的大小控制基因,系统地测定了5958个单基因缺失(4792个纯合基因缺失和1166个杂合基因缺失)对生长至饱和的酵母细胞大小的影响。从这些数据中,鉴定出49个显著改变细胞大小的基因。其中,34个基因参与转录、信号转导或细胞周期控制;这些基因中88%有推定的人类同源物。16个基因以剂量依赖方式调节细胞大小,鉴定出的大多数突变体无法正确退出细胞周期。这些基因中的许多是Ccr4-Not转录复合物的组成部分,或在PKC-MAP激酶途径中发挥作用。这些基因可能通过改变G1期细胞周期蛋白的表达或活性来调节细胞大小。
这些结果说明了如何利用系统的遗传筛选来剖析经典遗传方法难以处理的复杂生物学过程。这种全基因组遗传筛选产生了46个新的细胞大小突变体,并系统地评估了5958个单基因缺失在细胞退出细胞周期时对细胞大小的影响。