Suppr超能文献

广义线性模型中顺序约束参数的贝叶斯推断。

Bayesian inference on order-constrained parameters in generalized linear models.

作者信息

Dunson David B, Neelon Brian

机构信息

Biostatistics Branch, National Institute of Environmental Health Sciences, MD A3-03, P.O. Box 12233, Research Triangle Park, North Carolina 27709, USA.

出版信息

Biometrics. 2003 Jun;59(2):286-95. doi: 10.1111/1541-0420.00035.

Abstract

In biomedical studies, there is often interest in assessing the association between one or more ordered categorical predictors and an outcome variable, adjusting for covariates. For a k-level predictor, one typically uses either a k-1 degree of freedom (df) test or a single df trend test, which requires scores for the different levels of the predictor. In the absence of knowledge of a parametric form for the response function, one can incorporate monotonicity constraints to improve the efficiency of tests of association. This article proposes a general Bayesian approach for inference on order-constrained parameters in generalized linear models. Instead of choosing a prior distribution with support on the constrained space, which can result in major computational difficulties, we propose to map draws from an unconstrained posterior density using an isotonic regression transformation. This approach allows flat regions over which increases in the level of a predictor have no effect. Bayes factors for assessing ordered trends can be computed based on the output from a Gibbs sampling algorithm. Results from a simulation study are presented and the approach is applied to data from a time-to-pregnancy study.

摘要

在生物医学研究中,人们常常关注评估一个或多个有序分类预测变量与一个结果变量之间的关联,并对协变量进行调整。对于一个具有k个水平的预测变量,通常使用自由度为k - 1的检验或单自由度趋势检验,这需要预测变量不同水平的得分。在不知道响应函数的参数形式的情况下,可以纳入单调性约束以提高关联检验的效率。本文提出了一种用于广义线性模型中序约束参数推断的通用贝叶斯方法。我们不是选择在约束空间上有支撑的先验分布(这可能导致重大计算困难),而是建议使用保序回归变换对来自无约束后验密度的抽样进行映射。这种方法允许存在预测变量水平增加但无影响的平坦区域。可以基于吉布斯抽样算法的输出计算用于评估有序趋势的贝叶斯因子。给出了模拟研究的结果,并将该方法应用于妊娠时间研究的数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验