Saltikov Chad W, Newman Dianne K
Department of Geological and Planetary Sciences, California Institute of Technology, Mailstop 100-23, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10983-8. doi: 10.1073/pnas.1834303100. Epub 2003 Aug 25.
For more than a decade, it has been recognized that arsenate [H2AsO41-; As(V)] can be used by microorganisms as a terminal electron acceptor in anaerobic respiration. Given the toxicity of arsenic, the mechanistic basis of this process is intriguing, as is its evolutionary origin. Here we show that a two-gene cluster (arrAB; arsenate respiratory reduction) in the bacterium Shewanella sp. strain ANA-3 specifically confers respiratory As(V) reductase activity. Mutants with in-frame deletions of either arrA or arrB are incapable of growing on As(V), yet both are able to grow on a wide variety of other electron acceptors as efficiently as the wild-type. Complementation by the wild-type sequence rescues the mutants' ability to respire As(V). arrA is predicted to encode a 95.2-kDa protein with sequence motifs similar to the molybdenum containing enzymes of the dimethyl sulfoxide reductase family. arrB is predicted to encode a 25.7-kDa iron-sulfur protein. arrA and arrB comprise an operon that contains a twin arginine translocation (Tat) motif in ArrA (but not in ArrB) as well as a putative anaerobic transcription factor binding site upstream of arrA, suggesting that the respiratory As(V) reductase is exported to the periplasm via the Tat pathway and under anaerobic transcriptional control. These genes appear to define a new class of reductases that are specific for respiratory As(V) reduction.
十多年来,人们已经认识到,砷酸盐[H2AsO41-;As(V)]可被微生物用作厌氧呼吸中的末端电子受体。鉴于砷的毒性,这一过程的机制基础及其进化起源都很有趣。在这里,我们表明,希瓦氏菌属菌株ANA-3中的一个双基因簇(arrAB;砷酸盐呼吸还原)特异性地赋予呼吸性As(V)还原酶活性。缺失arrA或arrB读框内片段的突变体无法在As(V)上生长,但两者都能像野生型一样有效地利用多种其他电子受体生长。野生型序列的互补作用挽救了突变体呼吸As(V)的能力。预测arrA编码一种95.2 kDa的蛋白质,其序列基序类似于二甲基亚砜还原酶家族的含钼酶。预测arrB编码一种25.7 kDa的铁硫蛋白。arrA和arrB组成一个操纵子,在ArrA中含有一个双精氨酸转运(Tat)基序(但在ArrB中没有),以及arrA上游一个假定的厌氧转录因子结合位点,这表明呼吸性As(V)还原酶通过Tat途径输出到周质,并受厌氧转录控制。这些基因似乎定义了一类新的特异性用于呼吸性As(V)还原的还原酶。