Suppr超能文献

NADPH-diaphorase-positive cell populations in the human amygdala and temporal cortex: neuroanatomy, peptidergic characteristics and aspects of aging and Alzheimer's disease.

作者信息

Unger J W, Lange W

机构信息

Department of Anatomy, University of Munich, Federal Republic of Germany.

出版信息

Acta Neuropathol. 1992;83(6):636-46. doi: 10.1007/BF00299414.

Abstract

Previous studies have shown that nerve cells containing NADPH-diaphorase (NADPH-d) are relatively resistant to various damaging processes. NADPH-d has been found to be colocalized with somatostatin (SOM) and neuropeptide Y (NPY) in neuronal populations of several forebrain regions. We have investigated the anatomical distribution, morphology and cell sizes of NADPH-d neurons in amygdala and temporal cortex in Alzheimer's disease (AD) compared to controls of different age. NADPH-d cells and fibers were present in layers II-VI of the cortex and in the white matter below the cortical mantle. In the amygdaloid complex, NADPH-d cells and processes were observed in almost all subnuclei. In the amygdala of aged controls, only insignificant atrophic alterations of NADPH-d neurons and fibers were seen. In AD, a moderate, but significant shift towards an increased number of medium-to small-sized neurons was measured in amygdala and cortex, indicating cell shrinkage during the course of the disease. However, there were no differences when comparing NADPH-d staining in amygdaloid subregions in AD cases that contained numerous neuritic plaques (i.e., accessory basal nucleus) with areas that were relatively free of lesions (i.e., lateral nucleus). Analysis of cell size of SOM- and NPY-immunoreactive cells revealed only slight atrophic changes during aging. In AD, however, a significant atrophy of somatostatin neurons in temporal cortex was found, whereas no further cell shrinkage was noted for NPY as compared to aged controls. Colocalization tests demonstrated a large overlap between NPY, SOM and NADPH-d in the amygdala, whereas a subpopulation of cortical SOM neurons, predominantly localized in upper layers, showed a lack of NADPH-d. Our findings of a relative stability of a selective subclass of neurons during aging and AD support the hypothesis that cellular pathology may affect only specific neuronal populations while others might be spared.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验