Pinheiro Benedita A, Proctor Mark R, Martinez-Fleites Carlos, Prates José A M, Money Victoria A, Davies Gideon J, Bayer Edward A, Fontesm Carlos M G A, Fierobe Henri-Pierre, Gilbert Harry J
Centro Interdisciplinar de Investigação em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Lisboa, Portugal.
J Biol Chem. 2008 Jun 27;283(26):18422-30. doi: 10.1074/jbc.M801533200. Epub 2008 Apr 28.
The plant cell wall degrading apparatus of anaerobic bacteria includes a large multienzyme complex termed the "cellulosome." The complex assembles through the interaction of enzyme-derived dockerin modules with the multiple cohesin modules of the noncatalytic scaffolding protein. Here we report the crystal structure of the Clostridium cellulolyticum cohesin-dockerin complex in two distinct orientations. The data show that the dockerin displays structural symmetry reflected by the presence of two essentially identical cohesin binding surfaces. In one binding mode, visualized through the A16S/L17T dockerin mutant, the C-terminal helix makes extensive interactions with its cohesin partner. In the other binding mode observed through the A47S/F48T dockerin variant, the dockerin is reoriented by 180 degrees and interacts with the cohesin primarily through the N-terminal helix. Apolar interactions dominate cohesin-dockerin recognition that is centered around a hydrophobic pocket on the surface of the cohesin, formed by Leu-87 and Leu-89, which is occupied, in the two binding modes, by the dockerin residues Phe-19 and Leu-50, respectively. Despite the structural similarity between the C. cellulolyticum and Clostridium thermocellum cohesins and dockerins, there is no cross-specificity between the protein partners from the two organisms. The crystal structure of the C. cellulolyticum complex shows that organism-specific recognition between the protomers is dictated by apolar interactions primarily between only two residues, Leu-17 in the dockerin and the cohesin amino acid Ala-129. The biological significance of the plasticity in dockerin-cohesin recognition, observed here in C. cellulolyticum and reported previously in C. thermocellum, is discussed.
厌氧细菌的植物细胞壁降解装置包括一种称为“纤维小体”的大型多酶复合物。该复合物通过酶衍生的dockerin模块与非催化支架蛋白的多个cohesin模块之间的相互作用进行组装。在此,我们报道了纤维分解梭菌cohesin-dockerin复合物在两种不同取向下的晶体结构。数据表明,dockerin表现出结构对称性,这体现在存在两个基本相同的cohesin结合表面。在一种结合模式中,通过A16S/L17T dockerin突变体观察到,C末端螺旋与其cohesin伙伴进行广泛相互作用。在通过A47S/F48T dockerin变体观察到的另一种结合模式中,dockerin重新定向180度,并主要通过N末端螺旋与cohesin相互作用。非极性相互作用主导cohesin-dockerin识别,其围绕cohesin表面上由Leu-87和Leu-89形成的疏水口袋,在两种结合模式中,该口袋分别被dockerin残基Phe-19和Leu-50占据。尽管纤维分解梭菌和嗜热栖热梭菌的cohesin和dockerin之间存在结构相似性,但这两种生物体的蛋白质伙伴之间不存在交叉特异性。纤维分解梭菌复合物的晶体结构表明,原聚体之间的生物体特异性识别主要由仅两个残基之间的非极性相互作用决定,即dockerin中的Leu-17和cohesin氨基酸Ala-129。本文讨论了在纤维分解梭菌中观察到的以及先前在嗜热栖热梭菌中报道的dockerin-cohesin识别可塑性的生物学意义。