Chen Robert J, Choi Hee Cheul, Bangsaruntip Sarunya, Yenilmez Erhan, Tang Xiaowu, Wang Qian, Chang Ying-Lan, Dai Hongjie
Department of Chemistry, Stanford University, Stanford, California 94305, USA.
J Am Chem Soc. 2004 Feb 11;126(5):1563-8. doi: 10.1021/ja038702m.
It has been reported that protein adsorption on single-walled carbon nanotube field effect transistors (FETs) leads to appreciable changes in the electrical conductance of the devices, a phenomenon that can be exploited for label-free detection of biomolecules with a high potential for miniaturization. This work presents an elucidation of the electronic biosensing mechanisms with a newly developed microarray of nanotube "micromat" sensors. Chemical functionalization schemes are devised to block selected components of the devices from protein adsorption, self-assembled monolayers (SAMs) of methoxy(poly(ethylene glycol))thiol (mPEG-SH) on the metal electrodes (Au, Pd) and PEG-containing surfactants on the nanotubes. Extensive characterization reveals that electronic effects occurring at the metal-nanotube contacts due to protein adsorption constitute a more significant contribution to the electronic biosensing signal than adsorption solely along the exposed lengths of the nanotubes.
据报道,蛋白质吸附在单壁碳纳米管场效应晶体管(FET)上会导致器件电导发生明显变化,这一现象可用于无标记生物分子检测,具有高度小型化的潜力。这项工作通过新开发的纳米管“微矩阵”传感器微阵列对电子生物传感机制进行了阐释。设计了化学功能化方案来阻止器件的选定组件吸附蛋白质,在金属电极(金、钯)上的甲氧基(聚乙二醇)硫醇(mPEG-SH)自组装单分子层(SAMs)以及在纳米管上的含聚乙二醇表面活性剂。广泛的表征表明,由于蛋白质吸附在金属-纳米管接触处产生的电子效应,对电子生物传感信号的贡献比仅沿纳米管暴露长度的吸附更为显著。