Suppr超能文献

同型发酵乳酸生成无法维持工程酿酒酵母的厌氧生长:能量依赖型乳酸输出的可能后果。

Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export.

作者信息

van Maris Antonius J A, Winkler Aaron A, Porro Danilo, van Dijken Johannes P, Pronk Jack T

机构信息

Department of Biotechnology, Delft University of Technology, NL-2628 BC Delft, The Netherlands.

出版信息

Appl Environ Microbiol. 2004 May;70(5):2898-905. doi: 10.1128/AEM.70.5.2898-2905.2004.

Abstract

Due to a growing market for the biodegradable and renewable polymer polylactic acid, the world demand for lactic acid is rapidly increasing. The tolerance of yeasts to low pH can benefit the process economy of lactic acid production by minimizing the need for neutralizing agents. Saccharomyces cerevisiae (CEN.PK background) was engineered to a homofermentative lactate-producing yeast via deletion of the three genes encoding pyruvate decarboxylase and the introduction of a heterologous lactate dehydrogenase (EC 1.1.1.27). Like all pyruvate decarboxylase-negative S. cerevisiae strains, the engineered strain required small amounts of acetate for the synthesis of cytosolic acetyl-coenzyme A. Exposure of aerobic glucose-limited chemostat cultures to excess glucose resulted in the immediate appearance of lactate as the major fermentation product. Ethanol formation was absent. However, the engineered strain could not grow anaerobically, and lactate production was strongly stimulated by oxygen. In addition, under all conditions examined, lactate production by the engineered strain was slower than alcoholic fermentation by the wild type. Despite the equivalence of alcoholic fermentation and lactate fermentation with respect to redox balance and ATP generation, studies on oxygen-limited chemostat cultures showed that lactate production does not contribute to the ATP economy of the engineered yeast. This absence of net ATP production is probably due to a metabolic energy requirement (directly or indirectly in the form of ATP) for lactate export.

摘要

由于可生物降解和可再生聚合物聚乳酸的市场不断增长,全球对乳酸的需求正在迅速增加。酵母对低pH的耐受性可通过减少对中和剂的需求来提高乳酸生产的工艺经济性。通过缺失编码丙酮酸脱羧酶的三个基因并引入异源乳酸脱氢酶(EC 1.1.1.27),将酿酒酵母(CEN.PK背景)改造为同型发酵产乳酸酵母。与所有丙酮酸脱羧酶阴性的酿酒酵母菌株一样,改造后的菌株需要少量乙酸盐来合成胞质乙酰辅酶A。在需氧葡萄糖限制恒化器培养物中加入过量葡萄糖会导致乳酸立即成为主要发酵产物,且不产生乙醇。然而,改造后的菌株不能在厌氧条件下生长,氧气会强烈刺激乳酸的产生。此外,在所有检测条件下,改造后的菌株产生乳酸的速度都比野生型酒精发酵的速度慢。尽管酒精发酵和乳酸发酵在氧化还原平衡和ATP生成方面相当,但对限氧恒化器培养物的研究表明,乳酸产生对改造后的酵母的ATP经济性没有贡献。这种净ATP产生的缺失可能是由于乳酸输出需要代谢能量(直接或间接以ATP的形式)。

相似文献

8
Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae.
Microbiology (Reading). 1994 Mar;140 ( Pt 3):601-10. doi: 10.1099/00221287-140-3-601.
10
Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
Appl Environ Microbiol. 2007 Aug;73(15):4881-91. doi: 10.1128/AEM.00177-07. Epub 2007 Jun 1.

引用本文的文献

2
Lactic acid production by using a sequence of seasonally available fruit wastes as sustainable carbon sources.
Front Bioeng Biotechnol. 2024 Aug 2;12:1447278. doi: 10.3389/fbioe.2024.1447278. eCollection 2024.
3
Design and thermodynamic analysis of a pathway enabling anaerobic production of poly-3-hydroxybutyrate in .
Synth Syst Biotechnol. 2023 Sep 27;8(4):629-639. doi: 10.1016/j.synbio.2023.09.005. eCollection 2023 Dec.
4
The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts.
Front Microbiol. 2022 Jul 28;13:953479. doi: 10.3389/fmicb.2022.953479. eCollection 2022.
5
CRISPR-Cas system enables fast and simple genome editing of industrial strains.
Metab Eng Commun. 2015 Mar 20;2:13-22. doi: 10.1016/j.meteno.2015.03.001. eCollection 2015 Dec.
6
Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in .
Microb Cell. 2021 Apr 14;8(6):111-130. doi: 10.15698/mic2021.06.751.
7
Corrigendum to "Rewiring yeast metabolism to synthesize products beyond ethanol" [Curr Opin Chem Biol 59 (December 2020) 182-192].
Curr Opin Chem Biol. 2020 Dec;59:202-204. doi: 10.1016/j.cbpa.2020.10.006. Epub 2020 Nov 14.
8
Lactic acid production - producing microorganisms and substrates sources-state of art.
Heliyon. 2020 Oct 12;6(10):e04974. doi: 10.1016/j.heliyon.2020.e04974. eCollection 2020 Oct.
9
Rewiring yeast metabolism to synthesize products beyond ethanol.
Curr Opin Chem Biol. 2020 Dec;59:182-192. doi: 10.1016/j.cbpa.2020.08.005. Epub 2020 Oct 5.
10
Zero-growth bioprocesses: A challenge for microbial production strains and bioprocess engineering.
Eng Life Sci. 2016 Nov 11;17(1):27-35. doi: 10.1002/elsc.201600108. eCollection 2017 Jan.

本文引用的文献

2
Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium.
J Cell Comp Physiol. 1953 Feb;41(1):23-36. doi: 10.1002/jcp.1030410103.
4
Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.
J Ind Microbiol Biotechnol. 2003 Jan;30(1):22-7. doi: 10.1007/s10295-002-0004-2. Epub 2003 Jan 3.
6
Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae.
FEBS Lett. 2002 Apr 24;517(1-3):97-102. doi: 10.1016/s0014-5793(02)02585-1.
8
Microaerobic glycerol formation in Saccharomyces cerevisiae.
Yeast. 2000 Dec;16(16):1483-95. doi: 10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO;2-K.
9
Four years of post-genomic life with 6,000 yeast genes.
FEBS Lett. 2000 Aug 25;480(1):37-41. doi: 10.1016/s0014-5793(00)01775-0.
10
The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae.
J Bacteriol. 2000 Sep;182(17):4730-7. doi: 10.1128/JB.182.17.4730-4737.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验