Dallon John C, Othmer Hans G
Department of Mathematics, Brigham Young University, 312 TMCB, Provo, UT 84602-6539, USA.
J Theor Biol. 2004 Nov 21;231(2):203-22. doi: 10.1016/j.jtbi.2004.06.015.
How the collective motion of cells in a biological tissue originates in the behavior of a collection of individuals, each of which responds to the chemical and mechanical signals it receives from neighbors, is still poorly understood. Here we study this question for a particular system, the slug stage of the cellular slime mold Dictyostelium discoideum (Dd). We investigate how cells in the interior of a migrating slug can effectively transmit stress to the substrate and thereby contribute to the overall motive force. Theoretical analysis suggests necessary conditions on the behavior of individual cells, and computational results shed light on experimental results concerning the total force exerted by a migrating slug. The model predicts that only cells in contact with the substrate contribute to the translational motion of the slug. Since the model is not based specifically on the mechanical properties of Dd cells, the results suggest that this behavior will be found in many developing systems.
生物组织中细胞的集体运动如何起源于个体细胞的行为,而每个个体细胞又会对从相邻细胞接收到的化学和机械信号做出反应,这一点仍未得到很好的理解。在这里,我们针对一个特定的系统——细胞黏菌盘基网柄菌(Dd)的蛞蝓体阶段,研究这个问题。我们研究迁移中的蛞蝓体内的细胞如何有效地将应力传递到基质上,从而对整体驱动力做出贡献。理论分析提出了关于个体细胞行为的必要条件,计算结果则为有关迁移中的蛞蝓施加的总力的实验结果提供了启示。该模型预测,只有与基质接触的细胞才会对蛞蝓的平移运动做出贡献。由于该模型并非专门基于Dd细胞的力学特性,结果表明这种行为在许多发育系统中都可能存在。