Suppr超能文献

大型公共卫生试验中的整群随机化:前期数据的重要性。

Cluster randomization in large public health trials: the importance of antecedent data.

作者信息

Duffy S W, South M C, Day N E

机构信息

MRC Biostatistics Unit, Cambridge, U.K.

出版信息

Stat Med. 1992 Feb 15;11(3):307-16. doi: 10.1002/sim.4780110304.

Abstract

Large-scale public health trials are often randomized by geographic or administrative clusters, for reasons of financial or organizational exigency. In this paper, we deal with the situation where the dependent variable is a count of events, such as mortality from, or incidence of a given disease. Simulation results show that this design may decrease power by more than 50 per cent. The lost power can largely be replaced by incorporating information on the dependent variable, within clusters, before the start of the trial. The pretrial and trial data can be analysed by negative trinomial models.

摘要

由于财政或组织上的迫切需要,大规模公共卫生试验通常按地理或行政集群进行随机分组。在本文中,我们探讨了因变量为事件计数(如特定疾病的死亡率或发病率)的情况。模拟结果表明,这种设计可能会使检验效能降低超过50%。通过在试验开始前纳入集群内因变量的信息,很大程度上可以弥补损失的检验效能。可以用负二项式模型分析试验前和试验数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验