Suppr超能文献

通过准弹性中子散射研究固定化和天然大肠杆菌二氢叶酸还原酶的动力学

Dynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering.

作者信息

Tehei M, Smith J C, Monk C, Ollivier J, Oettl M, Kurkal V, Finney J L, Daniel R M

机构信息

Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.

出版信息

Biophys J. 2006 Feb 1;90(3):1090-7. doi: 10.1529/biophysj.105.062182. Epub 2005 Oct 28.

Abstract

The internal dynamics of native and immobilized Escherichia coli dihydrofolate reductase (DHFR) have been examined using incoherent quasielastic neutron scattering. These results reveal no difference between the high frequency vibration mean-square displacement of the native and the immobilized E. coli DHFR. However, length-scale-dependent, picosecond dynamical changes are found. On longer length scales, the dynamics are comparable for both DHFR samples. On shorter length scales, the dynamics is dominated by local jump motions over potential barriers. The residence time for the protons to stay in a potential well is tau = 7.95 +/- 1.02 ps for the native DHFR and tau = 20.36 +/- 1.80 ps for the immobilized DHFR. The average height of the potential barrier to the local motions is increased in the immobilized DHFR, and may increase the activation energy for the activity reaction, decreasing the rate as observed experimentally. These results suggest that the local motions on the picosecond timescale may act as a lubricant for those associated with DHFR activity occurring on a slower millisecond timescale. Experiments indicate a significantly slower catalytic reaction rate for the immobilized E. coli DHFR. However, the immobilization of the DHFR is on the exterior of the enzyme and essentially distal to the active site, thus this phenomenon has broad implications for the action of drugs distal to the active site.

摘要

已使用非相干准弹性中子散射研究了天然和固定化大肠杆菌二氢叶酸还原酶(DHFR)的内部动力学。这些结果表明,天然和固定化大肠杆菌DHFR的高频振动均方位移之间没有差异。然而,发现了长度尺度依赖性的皮秒动力学变化。在较长的长度尺度上,两种DHFR样品的动力学是可比的。在较短的长度尺度上,动力学主要由越过势垒的局部跳跃运动主导。对于天然DHFR,质子停留在势阱中的停留时间为τ = 7.95±1.02 ps,对于固定化DHFR,τ = 20.36±1.80 ps。固定化DHFR中局部运动的势垒平均高度增加,这可能会增加活性反应的活化能,从而降低实验观察到的速率。这些结果表明,皮秒时间尺度上的局部运动可能作为与DHFR活性相关的、发生在较慢毫秒时间尺度上的运动的润滑剂。实验表明,固定化大肠杆菌DHFR的催化反应速率明显较慢。然而,DHFR的固定化是在酶的外部,基本上远离活性位点,因此这种现象对远离活性位点的药物作用具有广泛的影响。

相似文献

1
Dynamics of immobilized and native Escherichia coli dihydrofolate reductase by quasielastic neutron scattering.
Biophys J. 2006 Feb 1;90(3):1090-7. doi: 10.1529/biophysj.105.062182. Epub 2005 Oct 28.
2
Fundamental and biotechnological applications of neutron scattering measurements for macromolecular dynamics.
Eur Biophys J. 2006 Sep;35(7):551-8. doi: 10.1007/s00249-006-0082-6. Epub 2006 Jul 26.
4
Structure, dynamics, and catalytic function of dihydrofolate reductase.
Annu Rev Biophys Biomol Struct. 2004;33:119-40. doi: 10.1146/annurev.biophys.33.110502.133613.
10
Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.
J Am Chem Soc. 2010 Jan 27;132(3):1137-43. doi: 10.1021/ja909353c.

引用本文的文献

1
How Useful can the Voigt Profile be in Protein Folding Processes?
Protein J. 2021 Apr;40(2):140-147. doi: 10.1007/s10930-020-09954-5. Epub 2021 Jan 5.
2
Correlation between supercoiling and conformational motions of the bacterial flagellar filament.
Biophys J. 2013 Nov 5;105(9):2157-65. doi: 10.1016/j.bpj.2013.09.039.
3
Dynamics of thermodynamically stable, kinetically trapped, and inhibitor-bound states of pepsin.
Biophys J. 2011 Oct 5;101(7):1699-709. doi: 10.1016/j.bpj.2011.08.002.
4
Update 1 of: Tunneling and dynamics in enzymatic hydride transfer.
Chem Rev. 2010 Dec 8;110(12):PR41-67. doi: 10.1021/cr1001035.
5
Atomic-scale dynamics inside living cells explored by neutron scattering.
J R Soc Interface. 2009 Oct 6;6 Suppl 5(Suppl 5):S611-7. doi: 10.1098/rsif.2009.0144.focus. Epub 2009 Jul 8.
6
7
In vivo measurement of internal and global macromolecular motions in Escherichia coli.
Biophys J. 2008 Jul;95(2):857-64. doi: 10.1529/biophysj.107.124420. Epub 2008 Mar 21.
8
The dynamical transition of proteins, concepts and misconceptions.
Eur Biophys J. 2008 Jun;37(5):591-602. doi: 10.1007/s00249-008-0274-3. Epub 2008 Feb 13.
9
Fundamental and biotechnological applications of neutron scattering measurements for macromolecular dynamics.
Eur Biophys J. 2006 Sep;35(7):551-8. doi: 10.1007/s00249-006-0082-6. Epub 2006 Jul 26.

本文引用的文献

1
Immobilized enzymes and cells as practical catalysts.
Science. 1983 Feb 11;219(4585):722-7. doi: 10.1126/science.219.4585.722.
4
Effect of mutation on enzyme motion in dihydrofolate reductase.
J Am Chem Soc. 2003 Apr 2;125(13):3745-50. doi: 10.1021/ja028487u.
5
Protein dynamics studied by neutron scattering.
Q Rev Biophys. 2002 Nov;35(4):327-67. doi: 10.1017/s0033583502003840.
6
The role of dynamics in enzyme activity.
Annu Rev Biophys Biomol Struct. 2003;32:69-92. doi: 10.1146/annurev.biophys.32.110601.142445. Epub 2002 Dec 2.
7
Effect of the environment on the protein dynamical transition: a neutron scattering study.
Biophys J. 2002 Aug;83(2):1157-64. doi: 10.1016/S0006-3495(02)75239-9.
8
Comparison of catalytic properties of free and immobilized cellobiase novozym 188.
Appl Biochem Biotechnol. 2001 Spring;91-93:615-26. doi: 10.1385/abab:91-93:1-9:615.
9
Preorganization and protein dynamics in enzyme catalysis.
Chem Rec. 2002;2(1):24-36. doi: 10.1002/tcr.10009.
10
Network of coupled promoting motions in enzyme catalysis.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2794-9. doi: 10.1073/pnas.052005999. Epub 2002 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验