Zeng Yinuo, Bao Wendi, Tao Liying, Hu Die, Yang Zonglin, Yang Liren, Shang Delong
Nanjing Institute of Intelligent Technology, Nanjing 210000, China.
Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100000, China.
Brain Sci. 2022 Jul 29;12(8):1008. doi: 10.3390/brainsci12081008.
The modeling procedure of current biological neuron models is hindered by either hyperparameter optimization or overparameterization, which limits their application to a variety of biologically realistic tasks. This article proposes a novel neuron model called the Regularized Spectral Spike Response Model (RSSRM) to address these issues. The selection of hyperparameters is avoided by the model structure and fitting strategy, while the number of parameters is constrained by regularization techniques. Twenty firing simulation experiments indicate the superiority of RSSRM. In particular, after pruning more than 99% of its parameters, RSSRM with 100 parameters achieves an RMSE of 5.632 in membrane potential prediction, a VRD of 47.219, and an F1-score of 0.95 in spike train forecasting with correct timing (±1.4 ms), which are 25%, 99%, 55%, and 24% better than the average of other neuron models with the same number of parameters in RMSE, VRD, F1-score, and correct timing, respectively. Moreover, RSSRM with 100 parameters achieves a memory use of 10 KB and a runtime of 1 ms during inference, which is more efficient than the Izhikevich model.
当前生物神经元模型的建模过程受到超参数优化或参数过多的阻碍,这限制了它们在各种生物现实任务中的应用。本文提出了一种名为正则化谱尖峰响应模型(RSSRM)的新型神经元模型来解决这些问题。该模型结构和拟合策略避免了超参数的选择,同时通过正则化技术限制了参数数量。二十次放电模拟实验表明了RSSRM的优越性。特别是,在修剪掉超过99%的参数后,具有100个参数的RSSRM在膜电位预测中的均方根误差(RMSE)为5.632,在尖峰序列预测中的电压分辨率差(VRD)为47.219,在具有正确时间(±1.4毫秒)的尖峰序列预测中的F1分数为0.95,在RMSE、VRD、F1分数和正确时间方面分别比具有相同参数数量的其他神经元模型的平均值好25%、99%、55%和24%。此外,具有100个参数的RSSRM在推理过程中的内存使用量为10 KB,运行时间为1毫秒,比Izhikevich模型更高效。