Suppr超能文献

双手交互中的动作和结果在不同的坐标系中表示。

Actions and consequences in bimanual interaction are represented in different coordinate systems.

作者信息

Bays Paul M, Wolpert Daniel M

机构信息

Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.

出版信息

J Neurosci. 2006 Jun 28;26(26):7121-6. doi: 10.1523/JNEUROSCI.0943-06.2006.

Abstract

Moving one part of the body can generate interaction forces that tend to destabilize other parts of the body. However, stability is maintained by mechanisms that predict and actively oppose these interaction forces. When our body or environment changes, these anticipatory mechanisms adapt so as to continue to produce accurate predictions. In this study, we examine the acquisition of a novel predictive coordination between the arms, in a situation in which a force is produced on one hand as a consequence of the action of the other hand. Specifically, a force was applied to the left hand that depended on the velocity of the right hand. With practice, subjects learned to stabilize the perturbed left arm during right-arm movements by predicting and actively opposing the externally applied forces. After adaptation, we examined how learning generalized to a new joint configuration of the right or left arm to investigate the coordinate systems in which the internal transformation from movement to force is represented. This revealed a dissociation between the representation of the action of the right arm and the representation of its consequence, that is the force on the left arm. The movement is represented in extrinsic coordinates related to the velocity of the hand, whereas the force resulting from the movement is represented in a joint-based intrinsic coordinate system.

摘要

移动身体的一部分会产生相互作用力,这些力往往会使身体的其他部分失去稳定。然而,身体通过预测并主动对抗这些相互作用力的机制来维持稳定性。当我们的身体或环境发生变化时,这些预期机制会进行调整,以便继续做出准确的预测。在本研究中,我们研究了在一种情况下双臂之间新型预测性协调的习得,即一只手的动作会导致另一只手受到力的作用。具体而言,对左手施加的力取决于右手的速度。通过练习,受试者学会了在右臂运动期间通过预测并主动对抗外部施加的力来稳定受干扰的左臂。适应之后,我们研究了学习如何推广到右臂或左臂的新关节配置,以探究运动到力的内部转换所呈现的坐标系。这揭示了右臂动作的表征与其结果(即左臂上的力)的表征之间的分离。运动以与手的速度相关的外在坐标来表示,而运动产生的力则以基于关节的内在坐标系来表示。

相似文献

2
Control of double-joint arm posture in adults with unilateral brain damage.单侧脑损伤成人双侧关节手臂姿势的控制
Exp Brain Res. 2005 Jun;163(4):468-86. doi: 10.1007/s00221-004-2202-9. Epub 2005 Feb 3.
4
The coordinate system for force control.力控制的坐标系。
Exp Brain Res. 2015 Mar;233(3):899-908. doi: 10.1007/s00221-014-4165-9. Epub 2014 Dec 6.
7
Coordinating degrees of freedom during interceptive actions in children.儿童在拦截动作中的自由度协调
Exp Brain Res. 2004 Jun;156(4):415-21. doi: 10.1007/s00221-003-1797-6. Epub 2004 Mar 13.
8
Threshold control of arm posture and movement adaptation to load.手臂姿势的阈值控制以及对负荷的运动适应
Exp Brain Res. 2006 Nov;175(4):726-44. doi: 10.1007/s00221-006-0591-7. Epub 2006 Jul 18.
9
Prior Movement of One Arm Facilitates Motor Adaptation in the Other.一只手臂的预先运动促进另一只手臂的运动适应。
J Neurosci. 2023 Jun 7;43(23):4341-4351. doi: 10.1523/JNEUROSCI.2166-22.2023. Epub 2023 May 9.

引用本文的文献

1
Learning context shapes bimanual control strategy and generalization of novel dynamics.学习环境塑造双手控制策略和新动力学的泛化。
PLoS Comput Biol. 2023 Dec 8;19(12):e1011189. doi: 10.1371/journal.pcbi.1011189. eCollection 2023 Dec.
9
Context-dependent partitioning of motor learning in bimanual movements.双手运动中运动学习的上下文相关分区。
J Neurophysiol. 2010 Oct;104(4):2082-91. doi: 10.1152/jn.00299.2010. Epub 2010 Aug 4.
10
Inter-limb interference during bimanual adaptation to dynamic environments.双手在动态环境下适应时的肢体间干扰。
Exp Brain Res. 2010 May;202(3):693-707. doi: 10.1007/s00221-010-2175-9. Epub 2010 Feb 20.

本文引用的文献

1
Motor control and learning in altered dynamic environments.在变化的动态环境中的运动控制与学习。
Curr Opin Neurobiol. 2005 Dec;15(6):653-9. doi: 10.1016/j.conb.2005.10.012. Epub 2005 Nov 3.
5
Spatial representation of predictive motor learning.预测性运动学习的空间表征
J Neurophysiol. 2003 Apr;89(4):1837-43. doi: 10.1152/jn.00929.2002.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验