Suppr超能文献

通过气相沉积在银膜上进行金属增强荧光免疫分析。

Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition.

作者信息

Zhang Jian, Matveeva Evgenia, Gryczynski Ignacy, Leonenko Zoya, Lakowicz Joseph R

机构信息

Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201, USA.

出版信息

J Phys Chem B. 2005 Apr 28;109(16):7969-75. doi: 10.1021/jp0456842.

Abstract

We studied a fluoroimmunoassay using metal-enhanced fluorescence (MEF) detection on silver film generated by vapor deposition method. The morphology of the silver film was controlled through the thickness of the film. A silica layer was coated on the silver film to protect the film and separate the fluorophore from the metal surface. Rabbit immunoglobulin G (IgG) was adsorbed on the silica by physiosorption and then dye-labeled anti-rabbit IgG was bound to the immobilized rabbit IgG. It was observed that the fluorophore was quenched on a thin silver film (2 nm), enhanced on a thick film (>5 nm), and reached saturation (ca. 10 times enhancement) at 20 nm. The MEF was also dependent on the thickness of the silica with a maximum at 10 nm. The lowest lifetime was observed on the 20 nm silver film, which was consistent with the saturation of MEF. These results showed the properties of a silver film needed for a maximum increase of fluorescence intensity in a fluoroimmunoassay. Dependence of the MEF on the emission wavelength was also studied using different dye-labeled anti-rabbit IgGs.

摘要

我们研究了一种采用金属增强荧光(MEF)检测的荧光免疫测定法,该检测基于通过气相沉积法生成的银膜。银膜的形态通过膜的厚度来控制。在银膜上涂覆一层二氧化硅层以保护该膜,并使荧光团与金属表面分离。兔免疫球蛋白G(IgG)通过物理吸附作用吸附在二氧化硅上,然后将染料标记的抗兔IgG与固定化的兔IgG结合。观察到荧光团在薄银膜(2纳米)上发生淬灭,在厚膜(>5纳米)上增强,并在20纳米时达到饱和(增强约10倍)。MEF也取决于二氧化硅的厚度,在10纳米时达到最大值。在20纳米银膜上观察到最低的寿命,这与MEF的饱和情况一致。这些结果表明了在荧光免疫测定中实现荧光强度最大增加所需的银膜特性。还使用不同的染料标记抗兔IgG研究了MEF对发射波长的依赖性。

相似文献

1
Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition.
J Phys Chem B. 2005 Apr 28;109(16):7969-75. doi: 10.1021/jp0456842.
2
Metal-enhanced fluorescence of an organic fluorophore using gold particles.
Opt Express. 2007 Mar 5;15(5):2598-606. doi: 10.1364/oe.15.002598.
3
Metal-enhanced Intrinsic Fluorescence of Proteins on Silver Nanostructured Surfaces towards Label-Free Detection.
J Phys Chem C Nanomater Interfaces. 2008;112(46):17957-17963. doi: 10.1021/jp807025n.
4
Directional surface plasmon-coupled emission: application for an immunoassay in whole blood.
Anal Biochem. 2005 Sep 15;344(2):161-7. doi: 10.1016/j.ab.2005.07.005.
5
Metal particle-enhanced fluorescent immunoassays on metal mirrors.
Anal Biochem. 2007 Apr 15;363(2):239-45. doi: 10.1016/j.ab.2007.01.030. Epub 2007 Jan 26.
6
Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules.
Photosynth Res. 2016 Jan;127(1):103-8. doi: 10.1007/s11120-015-0178-x. Epub 2015 Jul 14.
7
Metal-enhanced fluorescence from silver-SiO2-silver nanoburger structures.
Langmuir. 2010 Jul 20;26(14):12371-6. doi: 10.1021/la101801n.
8
Sandwich type plasmonic platform for MEF using silver fractals.
Nanoscale. 2015 Nov 14;7(42):17729-34. doi: 10.1039/c5nr05834a.
9
Silver-coated silica beads applicable as core materials of dual-tagging sensors operating via SERS and MEF.
ACS Appl Mater Interfaces. 2009 Oct;1(10):2174-80. doi: 10.1021/am9003396.
10
Distance-Dependent Metal-Enhanced Intrinsic Fluorescence of Proteins Using Polyelectrolyte Layer-by-Layer Assembly and Aluminum Nanoparticles.
J Phys Chem C Nanomater Interfaces. 2012 May 17;116(19):10766-10773. doi: 10.1021/jp2122714. Epub 2012 Apr 23.

引用本文的文献

1
Plasmonic nanoparticle sensors: current progress, challenges, and future prospects.
Nanoscale Horiz. 2024 Nov 19;9(12):2085-2166. doi: 10.1039/d4nh00226a.
2
Single molecule photophysics near metallic nanostructures.
Proc SPIE Int Soc Opt Eng. 2008 Jan;6862. doi: 10.1117/12.770381. Epub 2008 Feb 21.
4
Plasma-Induced Wafer-Scale Self-Assembly of Silver Nanoparticles and Application to Biochemical Sensing.
Materials (Basel). 2015 Jun 24;8(7):3806-3814. doi: 10.3390/ma8073806.
5
Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review.
IEEE Sens J. 2016 May 15;16(10):3349-3366. doi: 10.1109/JSEN.2015.2429738. Epub 2015 May 5.
7
Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy.
Analyst. 2014 Nov 21;139(22):5954-63. doi: 10.1039/c4an01508h.
9
Plasmon-controlled fluorescence and single DNA strand sequenching.
Proc SPIE Int Soc Opt Eng. 2012 Sep 2;8234:82340M. doi: 10.1117/12.916177.
10
A straightforward immunoassay applicable to a wide range of antibodies based on surface enhanced fluorescence.
J Fluoresc. 2013 May;23(3):551-9. doi: 10.1007/s10895-013-1187-9. Epub 2013 Mar 5.

本文引用的文献

2
Multiphoton Excitation of Fluorescence near Metallic Particles: Enhanced and Localized Excitation.
J Phys Chem B. 2002 Mar 1;106(9):2191-2195. doi: 10.1021/jp013013n. Epub 2002 Feb 9.
5
Quantitative Evaluation of SERS-Active Ag Film Nanostructure by Atomic Force Microscopy.
Anal Chem. 1996 Feb 1;68(3):473-80. doi: 10.1021/ac950909d.
6
Electrochemical and Laser Deposition of Silver for Use in Metal-Enhanced Fluorescence.
Langmuir. 2003 Jul 22;19(15):6236-6241. doi: 10.1021/la020930r.
7
Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces.
J Phys Chem B. 2003;107(34):8829-8833. doi: 10.1021/jp022660r.
8
Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission.
Anal Biochem. 2005 Feb 15;337(2):171-94. doi: 10.1016/j.ab.2004.11.026.
9
10
Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging.
J Biomed Opt. 2003 Jul;8(3):472-8. doi: 10.1117/1.1578643.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验