Gooya Ali, Pohl Kilian M, Bilello Michel, Biros George, Davatzikos Christos
Section for Biomedical Image Analysis, Suite 380, 3600 Market St.,19104 Philadelphia, USA.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):532-40. doi: 10.1007/978-3-642-23629-7_65.
This paper presents an approach for joint segmentation and deformable registration of brain scans of glioma patients to a normal atlas. The proposed method is based on the Expectation Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the normal atlas into one with a tumor and edema. The modified atlas is registered into the patient space and utilized for the posterior probability estimation of various tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior probabilities of tissue labels and the tumor growth model parameters. We have applied this approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and FLAIR) and validated the result by comparing them to manual segmentations by clinical experts. The resulting segmentations look promising and quantitatively match well with the expert provided ground truth.
本文提出了一种将胶质瘤患者脑部扫描图像与正常图谱进行联合分割和可变形配准的方法。所提出的方法基于期望最大化(EM)算法,该算法结合了用于图谱种子点的胶质瘤生长模型,此过程将正常图谱修改为带有肿瘤和水肿的图谱。修改后的图谱被配准到患者空间,并用于各种组织标签的后验概率估计。EM迭代地细化配准参数估计、组织标签的后验概率以及肿瘤生长模型参数。我们已将此方法应用于通过四种磁共振(MR)模态(T1、T1增强、T2和液体衰减反转恢复序列(FLAIR))获取的10例胶质瘤扫描图像,并通过与临床专家的手动分割结果进行比较来验证结果。所得分割结果看起来很有前景,并且在定量上与专家提供的真实情况匹配良好。