Suppr超能文献

基于肿瘤生长模型的脑部扫描联合分割与可变形配准

Joint segmentation and deformable registration of brain scans guided by a tumor growth model.

作者信息

Gooya Ali, Pohl Kilian M, Bilello Michel, Biros George, Davatzikos Christos

机构信息

Section for Biomedical Image Analysis, Suite 380, 3600 Market St.,19104 Philadelphia, USA.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):532-40. doi: 10.1007/978-3-642-23629-7_65.

Abstract

This paper presents an approach for joint segmentation and deformable registration of brain scans of glioma patients to a normal atlas. The proposed method is based on the Expectation Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the normal atlas into one with a tumor and edema. The modified atlas is registered into the patient space and utilized for the posterior probability estimation of various tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior probabilities of tissue labels and the tumor growth model parameters. We have applied this approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and FLAIR) and validated the result by comparing them to manual segmentations by clinical experts. The resulting segmentations look promising and quantitatively match well with the expert provided ground truth.

摘要

本文提出了一种将胶质瘤患者脑部扫描图像与正常图谱进行联合分割和可变形配准的方法。所提出的方法基于期望最大化(EM)算法,该算法结合了用于图谱种子点的胶质瘤生长模型,此过程将正常图谱修改为带有肿瘤和水肿的图谱。修改后的图谱被配准到患者空间,并用于各种组织标签的后验概率估计。EM迭代地细化配准参数估计、组织标签的后验概率以及肿瘤生长模型参数。我们已将此方法应用于通过四种磁共振(MR)模态(T1、T1增强、T2和液体衰减反转恢复序列(FLAIR))获取的10例胶质瘤扫描图像,并通过与临床专家的手动分割结果进行比较来验证结果。所得分割结果看起来很有前景,并且在定量上与专家提供的真实情况匹配良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c70f/3246749/065344523474/nihms-344142-f0001.jpg

相似文献

2
GLISTR: glioma image segmentation and registration.GLISTR:脑胶质瘤图像分割与配准。
IEEE Trans Med Imaging. 2012 Oct;31(10):1941-54. doi: 10.1109/TMI.2012.2210558. Epub 2012 Aug 13.
4
Combining generative models for multifocal glioma segmentation and registration.用于多灶性胶质瘤分割与配准的生成模型融合
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):763-70. doi: 10.1007/978-3-319-10404-1_95.
7
Robust whole-brain segmentation: application to traumatic brain injury.稳健的全脑分割:在创伤性脑损伤中的应用。
Med Image Anal. 2015 Apr;21(1):40-58. doi: 10.1016/j.media.2014.12.003. Epub 2014 Dec 24.

引用本文的文献

2
Coupling brain-tumor biophysical models and diffeomorphic image registration.耦合脑肿瘤生物物理模型与微分同胚图像配准
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
3
Scalable Joint Segmentation and Registration Framework for Infant Brain Images.用于婴儿脑图像的可扩展联合分割与配准框架
Neurocomputing (Amst). 2017 Mar 15;229:54-62. doi: 10.1016/j.neucom.2016.05.107. Epub 2016 Nov 16.
10
GLISTR: glioma image segmentation and registration.GLISTR:脑胶质瘤图像分割与配准。
IEEE Trans Med Imaging. 2012 Oct;31(10):1941-54. doi: 10.1109/TMI.2012.2210558. Epub 2012 Aug 13.

本文引用的文献

4
A Bayesian model for joint segmentation and registration.一种用于联合分割与配准的贝叶斯模型。
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
5
Unified segmentation.统一分割
Neuroimage. 2005 Jul 1;26(3):839-51. doi: 10.1016/j.neuroimage.2005.02.018. Epub 2005 Apr 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验