Suppr超能文献

精神分裂症中基底神经节的结构分析。

Structural analysis of the basal ganglia in schizophrenia.

作者信息

Mamah Daniel, Wang Lei, Barch Deanna, de Erausquin Gabriel A, Gado Mokhtar, Csernansky John G

机构信息

Department of Psychiatry, Washington University Medical School, St. Louis, MO 63110, USA.

出版信息

Schizophr Res. 2007 Jan;89(1-3):59-71. doi: 10.1016/j.schres.2006.08.031. Epub 2006 Oct 30.

Abstract

Increases in the total volume of basal ganglia structures have been reported in schizophrenia. However, patterns of basal ganglia shape change, which can reveal localized changes in substructure volumes, have not been investigated. In this study, the total volume and shape of several basal ganglia structures were compared in subjects with and without schizophrenia. T(1)-weighted magnetic resonance scans were collected in 54 schizophrenia and 70 comparison subjects. High-dimensional (large-deformation) brain mapping was used to assess the shape and volume of several basal ganglia structures. The relationships of shape and volume measures with psychopathology, cognition and motor function were also assessed. Left and right volumes of the caudate and putamen, as well as the right globus pallidus volume, were significantly increased in subjects with schizophrenia as compared to comparison subjects after total brain volume was included as a covariate. Significant differences in shape accompanied these volume changes in the caudate, putamen and globus pallidus, after their total volumes were included as covariates. There were few significant correlations between volume or shape measures and either cognitive function or clinical symptoms, other than a positive correlation between an attention/vigilance cognitive dimension and the volume of the caudate and putamen, and a negative correlation between nucleus accumbens volume and delusions. In conclusion, basal ganglia volumes relative to total brain volume were larger in schizophrenia subjects than healthy comparison subjects. Specific patterns of shape change accompanied these volume differences.

摘要

已有报道称精神分裂症患者基底神经节结构的总体积会增加。然而,基底神经节形状变化的模式(其可揭示子结构体积的局部变化)尚未得到研究。在本研究中,对患有和未患有精神分裂症的受试者的多个基底神经节结构的总体积和形状进行了比较。对54名精神分裂症患者和70名对照受试者进行了T(1)加权磁共振扫描。采用高维(大变形)脑图谱来评估多个基底神经节结构的形状和体积。还评估了形状和体积测量值与精神病理学、认知和运动功能之间的关系。将全脑体积作为协变量纳入后,与对照受试者相比,精神分裂症患者的左右尾状核和壳核体积以及右侧苍白球体积显著增加。将尾状核、壳核和苍白球的总体积作为协变量纳入后,这些结构的形状变化伴随着显著差异。除了注意力/警觉性认知维度与尾状核和壳核体积呈正相关,伏隔核体积与妄想呈负相关外,体积或形状测量值与认知功能或临床症状之间几乎没有显著相关性。总之,相对于全脑体积,精神分裂症患者的基底神经节体积比健康对照受试者更大。这些体积差异伴随着特定的形状变化模式。

相似文献

1
Structural analysis of the basal ganglia in schizophrenia.
Schizophr Res. 2007 Jan;89(1-3):59-71. doi: 10.1016/j.schres.2006.08.031. Epub 2006 Oct 30.
2
Basal ganglia shape abnormalities in the unaffected siblings of schizophrenia patients.
Biol Psychiatry. 2008 Jul 15;64(2):111-20. doi: 10.1016/j.biopsych.2008.01.004. Epub 2008 Mar 4.
6
Structural neuroimaging of the basal ganglia in schizophrenic patients: a review.
Wien Med Wochenschr. 2008;158(3-4):84-90. doi: 10.1007/s10354-007-0478-7.
7
Basal ganglia pathology in schizophrenia and tardive dyskinesia: an MRI quantitative study.
Am J Psychiatry. 1994 May;151(5):752-5. doi: 10.1176/ajp.151.5.752.
8
Caudate, putamen, and globus pallidus volume in schizophrenia: a quantitative MRI study.
Psychiatry Res. 1995 Nov 10;61(4):209-29. doi: 10.1016/0925-4927(95)02729-h.
9
MRI abnormalities in tardive dyskinesia.
Psychiatry Res. 1991 Nov;40(3):157-66. doi: 10.1016/0925-4927(91)90007-d.
10
An MRI study of basal ganglia volumes in first-episode schizophrenia patients treated with risperidone.
Am J Psychiatry. 2001 Apr;158(4):625-31. doi: 10.1176/appi.ajp.158.4.625.

引用本文的文献

4
Cortical and Subcortical Structural Morphometric Profiles in Individuals with Nonaffective and Affective Early Illness Psychosis.
Schizophr Bull Open. 2022 Apr 26;3(1):sgac028. doi: 10.1093/schizbullopen/sgac028. eCollection 2022 Jan.
7
Improved segmentation of basal ganglia from MR images using convolutional neural network with crossover-typed skip connection.
Int J Comput Assist Radiol Surg. 2024 Mar;19(3):433-442. doi: 10.1007/s11548-023-03015-9. Epub 2023 Nov 20.
8
Present and Future Modeling of Human Psychiatric Connectopathies With Brain Organoids.
Biol Psychiatry. 2023 Apr 1;93(7):606-615. doi: 10.1016/j.biopsych.2022.12.017. Epub 2022 Dec 23.
10
Shape features of working memory-related deep-brain regions differentiate high and low community functioning in schizophrenia.
Schizophr Res Cogn. 2022 Mar 29;29:100250. doi: 10.1016/j.scog.2022.100250. eCollection 2022 Sep.

本文引用的文献

2
Identification of separable cognitive factors in schizophrenia.
Schizophr Res. 2004 Dec 15;72(1):29-39. doi: 10.1016/j.schres.2004.09.007.
4
Gradients of dopamine D1- and D2/3-binding sites in the basal ganglia of pig and monkey measured by PET.
Neuroimage. 2004 Jul;22(3):1076-83. doi: 10.1016/j.neuroimage.2004.03.004.
5
Attention disorders in schizophrenia.
Psychiatry Clin Neurosci. 2004 Jun;58(3):249-56. doi: 10.1111/j.1440-1819.2004.01227.x.
6
Abnormalities of thalamic volume and shape in schizophrenia.
Am J Psychiatry. 2004 May;161(5):896-902. doi: 10.1176/appi.ajp.161.5.896.
7
Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans.
Ann Neurol. 2004 Apr;55(4):522-9. doi: 10.1002/ana.20030.
8
A review of the cognitive and behavioral sequelae of Parkinson's disease: relationship to frontostriatal circuitry.
Cogn Behav Neurol. 2003 Dec;16(4):193-210. doi: 10.1097/00146965-200312000-00001.
9
Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping.
Am J Psychiatry. 2002 Dec;159(12):2000-6. doi: 10.1176/appi.ajp.159.12.2000.
10
Striatal volume changes in the rat following long-term administration of typical and atypical antipsychotic drugs.
Neuropsychopharmacology. 2002 Aug;27(2):143-51. doi: 10.1016/S0893-133X(02)00287-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验