Suppr超能文献

情绪斯特鲁普效应的自动性:一项元分析。

The automaticity of emotional Stroop: a meta-analysis.

作者信息

Phaf R Hans, Kan Kees-Jan

机构信息

Department of Psychonomics, University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands.

出版信息

J Behav Ther Exp Psychiatry. 2007 Jun;38(2):184-99. doi: 10.1016/j.jbtep.2006.10.008. Epub 2006 Nov 16.

Abstract

An automatic bias to threat is often invoked to account for colour-naming interference in emotional Stroop. Recent findings by McKenna and Sharma [(2004). Reversing the emotional Stroop effect reveals that it is not what it seems: The role of fast and slow components. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 382-392], however, cast doubt on the fast and non-conscious nature of emotional Stroop. Interference by threat words only occurred with colour naming in the trial subsequent to the threat trial (i.e., a "slow" effect), but not immediately (i.e., a "fast" effect, as would be predicted by the bias hypothesis). In a meta-analysis of 70 published emotional Stroop studies the largest effects occurred when presentation of threat words was blocked, suggesting a strong contribution by slow interference. We did not find evidence; moreover, for interference in suboptimal (less conscious) presentation conditions and the only significant effects were observed in optimal (fully conscious) conditions with high-anxious non-clinical participants and patients. The emotional Stroop effect seems to rely more on a slow disengagement process than on a fast, automatic, bias.

摘要

在解释情绪斯特鲁普效应中的颜色命名干扰时,人们常常提到对威胁的自动偏向。然而,麦肯纳和夏尔马近期的研究结果[(2004年)。逆转情绪斯特鲁普效应表明其并非表面所见:快速和慢速成分的作用。《实验心理学杂志:学习、记忆与认知》,第30卷,第382 - 392页]对情绪斯特鲁普效应的快速和无意识本质提出了质疑。威胁词的干扰仅在威胁试验后的试验中对颜色命名产生影响(即一种“慢速”效应),而不是立即产生影响(即一种“快速”效应,这是偏向假设所预测的)。在对70项已发表的情绪斯特鲁普研究的元分析中,当威胁词的呈现被阻断时,效应最大,这表明慢速干扰起到了很大作用。此外,我们没有发现证据表明在次优(意识程度较低)的呈现条件下存在干扰,并且仅在高焦虑非临床参与者和患者的最优(完全有意识)条件下观察到了显著效应。情绪斯特鲁普效应似乎更多地依赖于一个缓慢的脱离过程,而非快速、自动的偏向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验