Nunberg J H, Schleif W A, Boots E J, O'Brien J A, Quintero J C, Hoffman J M, Emini E A, Goldman M E
Department of Virus and Cell Biology, Merck Sharp & Dohme Research Laboratories, West Point, Pennsylvania 19486.
J Virol. 1991 Sep;65(9):4887-92. doi: 10.1128/JVI.65.9.4887-4892.1991.
Human immunodeficiency virus type 1 (HIV-1)-specific pyridinone reverse transcriptase (RT) inhibitors prevent HIV-1 replication in cell culture (M. E. Goldman, J. H. Nunberg, J. A. O'Brien, J.C. Quintero, W. A. Schleif, K. F. Freund, S. L. Gaul, W. S. Saari, J. S. Wai, J. M. Hoffman, P. S. Anderson, D. J. Hupe, E. A. Emini, and A. M. Stern, Proc. Natl. Acad. Sci. USA 88:6863-6867, 1991). In contrast to nucleoside analog inhibitors, such as AZT, which need to be converted to triphosphates by host cells, these compounds act directly to inhibit RT via a mechanism which is noncompetitive with respect to deoxynucleoside triphosphates. As one approach to define the mechanism of action of pyridinone inhibitors, we isolated resistant mutants of HIV-1 in cell culture. Serial passage in the presence of inhibitor yielded virus which was 1,000-fold resistant to compounds of this class. Bacterially expressed RTs molecularly cloned from resistant viruses were also resistant. The resistant RT genes encoded two amino acid changes, K-103 to N and Y-181 to C, each of which contributed partial resistance. The mutation at amino acid 181 lies adjacent to the conserved YG/MDD motif found in most DNA and RNA polymerases. The mutation at amino acid 103 lies within a region of RT which may be involved in PPi binding. The resistant viruses, although sensitive to nucleoside analogs, were cross-resistant to the structurally unrelated RT inhibitors TIBO R82150 (R. Pauwels, K. Andries, J. Desmyter, D. Schols, M. J. Kukla, H. J. Breslin, A. Raeymaeckers, J. Van Gelder, R. Woestenborghs, J. Heykanti, K. Schellekens, M. A. C. Janssen, E. De Clercq, and P. A. J. Janssen, Nature [London] 343:470-474, 1990) and BI-RG-587 (V. J. Merluzzi, K. D. Hargrave, M. Labadia, K. Grozinger, M. Skoog, J. C. Wu, C.-K. Shih, K. Eckner, S. Hattox, J. Adams, A. S. Rosenthal, R. Faanes, R. J. Eckner, R. A. Koup, and J. L. Sullivan, Science 250:1411-1413, 1990). Thus, these nonnucleoside analog inhibitors may share a common binding site on RT and may all make up a single pharmacologic class of RT inhibitor. This observation may have important implications for the clinical development of these compounds.
1型人类免疫缺陷病毒(HIV-1)特异性吡啶酮逆转录酶(RT)抑制剂可阻止HIV-1在细胞培养物中复制(M.E.戈德曼、J.H.农伯格、J.A.奥布赖恩、J.C.金特罗、W.A.施莱夫、K.F.弗罗伊德、S.L.高尔、W.S.萨里、J.S.韦、J.M.霍夫曼、P.S.安德森、D.J.胡普、E.A.埃米尼和A.M.斯特恩,《美国国家科学院院刊》88:6863 - 6867,1991)。与核苷类似物抑制剂(如齐多夫定,需由宿主细胞转化为三磷酸形式)不同,这些化合物通过一种对脱氧核苷三磷酸而言非竞争性的机制直接作用于抑制RT。作为确定吡啶酮抑制剂作用机制的一种方法,我们在细胞培养物中分离出了HIV-1的抗性突变体。在抑制剂存在下连续传代产生了对该类化合物具有1000倍抗性的病毒。从抗性病毒中分子克隆的细菌表达RT也具有抗性。抗性RT基因编码两个氨基酸变化,K-103变为N以及Y-181变为C,每个变化都赋予了部分抗性。氨基酸181处的突变位于大多数DNA和RNA聚合酶中发现的保守YG/MDD基序附近。氨基酸103处的突变位于RT的一个可能参与焦磷酸(PPi)结合的区域内。抗性病毒虽然对核苷类似物敏感,但对结构不相关的RT抑制剂TIBO R82150(R.保韦尔斯、K.安德里耶斯、J.德斯米特、D.朔尔斯、M.J.库克拉、H.J.布雷斯林、A.雷马克斯、J.范盖尔德、R.沃斯滕博格斯、J.海坎蒂、K.谢勒肯斯、M.A.C.扬森、E.德克勒克和P.A.J.扬森,《自然》[伦敦]343:470 - 474,1990)和BI-RG-587(V.J.梅尔卢齐、K.D.哈格雷夫、M.拉巴迪亚、K.格罗辛格、M.斯科格、J.C.吴、C.-K.施、K.埃克纳、S.哈托克斯、J.亚当斯、A.S.罗森塔尔、R.法内斯、R.J.埃克纳、R.A.库普和J.L.沙利文,《科学》250:1411 - 1413,1990)具有交叉抗性。因此,这些非核苷类似物抑制剂可能在RT上共享一个共同的结合位点,并且可能都构成RT抑制剂的单一药理学类别。这一观察结果可能对这些化合物的临床开发具有重要意义。