Suppr超能文献

联合优势:结合癫痫发作预测方法。

Joining the benefits: combining epileptic seizure prediction methods.

机构信息

Bernstein Center for Computational Neuroscience Freiburg, University of Freiburg, Freiburg, Germany.

出版信息

Epilepsia. 2010 Aug;51(8):1598-606. doi: 10.1111/j.1528-1167.2009.02497.x. Epub 2010 Jan 7.

Abstract

PURPOSE

In recent years, a variety of methods developed in the field of linear and nonlinear time series analysis have been used to obtain reliable predictions of epileptic seizures. Because individual methods for seizure prediction so far have shown statistical significance but insufficient performance for clinical applications, we investigated possible improvements by combining algorithms capturing different aspects of electroencephalogram (EEG) dynamics.

METHODS

We applied the mean phase coherence and the dynamic similarity index to long-term continuous intracranial EEG data. The predictive performance of both methods was assessed and statistically evaluated separately, as well as by using logical "AND" and "OR" combinations.

RESULTS

Used independently, either method resulted in a statistically significant prediction performance in only a few patients. Particularly the "AND" combination led to improved prediction performances, leading to an increase in sensitivity and/or specificity. For a maximum false prediction rate of 0.15/h, the mean sensitivity improved from about 25% for the individual methods to 43.2% for the "AND" and to 35.2% for the "OR" combination.

DISCUSSION

This study shows that combinations of prediction methods are promising new approaches to enhance seizure prediction performance considerably. It allows merging the individual benefits of prediction methods in a complementary manner. Because either sensitivity or specificity of seizure prediction methods can be improved depending on the needs of the desired clinical application, the combination opens a new window for future use in a clinical setting.

摘要

目的

近年来,线性和非线性时间序列分析领域开发的各种方法已被用于获得可靠的癫痫发作预测。由于迄今为止用于癫痫发作预测的个别方法仅显示出统计学意义,但对于临床应用的性能不足,我们通过组合捕获脑电图(EEG)动力学不同方面的算法来研究了可能的改进。

方法

我们将平均相位相干性和动态相似性指数应用于长期连续的颅内 EEG 数据。分别评估了这两种方法的预测性能,并进行了统计学评估,以及使用逻辑“与”和“或”组合。

结果

单独使用时,两种方法在少数患者中仅导致统计学上显著的预测性能。特别是“与”组合导致预测性能得到改善,从而提高了灵敏度和/或特异性。对于最大假预测率为 0.15/h,平均灵敏度从单个方法的约 25%提高到“与”的 43.2%和“或”的 35.2%。

讨论

本研究表明,预测方法的组合是增强癫痫发作预测性能的有前途的新方法。它允许以互补的方式合并预测方法的个体优势。由于癫痫发作预测方法的灵敏度或特异性可以根据所需临床应用的需求得到改善,因此该组合为未来在临床环境中的使用开辟了新的窗口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验