Hynna Kai M, Boahen Kwabena
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Neural Comput. 2007 Feb;19(2):327-50. doi: 10.1162/neco.2007.19.2.327.
We model ion channels in silicon by exploiting similarities between the thermodynamic principles that govern ion channels and those that govern transistors. Using just eight transistors, we replicate--for the first time in silicon--the sigmoidal voltage dependence of activation (or inactivation) and the bell-shaped voltage-dependence of its time constant. We derive equations describing the dynamics of our silicon analog and explore its flexibility by varying various parameters. In addition, we validate the design by implementing a channel with a single activation variable. The design's compactness allows tens of thousands of copies to be built on a single chip, facilitating the study of biologically realistic models of neural computation at the network level in silicon.
我们通过利用支配离子通道的热力学原理与支配晶体管的热力学原理之间的相似性,在硅中对离子通道进行建模。仅使用八个晶体管,我们就在硅中首次复制了激活(或失活)的S形电压依赖性及其时间常数的钟形电压依赖性。我们推导了描述硅模拟物动力学的方程,并通过改变各种参数来探索其灵活性。此外,我们通过实现一个具有单个激活变量的通道来验证该设计。该设计的紧凑性使得能够在单个芯片上构建数万个副本,便于在硅中对网络层面的神经计算生物学现实模型进行研究。