Suppr超能文献

高密度酵母平铺阵列揭示了先前未发现的内含子以及减数分裂剪接的广泛调控。

High-density yeast-tiling array reveals previously undiscovered introns and extensive regulation of meiotic splicing.

作者信息

Juneau Kara, Palm Curtis, Miranda Molly, Davis Ronald W

机构信息

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1522-7. doi: 10.1073/pnas.0610354104. Epub 2007 Jan 23.

Abstract

Knowing gene structure is vital to understanding gene function, and accurate genome annotation is essential for understanding cellular function. To this end, we have developed a genome-wide assay for mapping introns in Saccharomyces cerevisiae. Using high-density tiling arrays, we compared wild-type yeast to a mutant deficient for intron degradation. Our method identified 76% of the known introns, confirmed 18 previously predicted introns, and revealed 9 formerly undiscovered introns. Furthermore, we discovered that all 13 meiosis-specific intronic yeast genes undergo regulated splicing, which provides posttranscriptional regulation of the genes involved in yeast cell differentiation. Moreover, we found that approximately 16% of intronic genes in yeast are incompletely spliced during exponential growth in rich medium, which suggests that meiosis is not the only biological process regulated by splicing. Our tiling-array assay provides a snapshot of the spliced transcriptome in yeast. This robust methodology can be used to explore environmentally distinct splicing responses and should be readily adaptable to the study of other organisms, including humans.

摘要

了解基因结构对于理解基因功能至关重要,而准确的基因组注释对于理解细胞功能必不可少。为此,我们开发了一种全基因组分析方法来绘制酿酒酵母中的内含子图谱。利用高密度平铺阵列,我们将野生型酵母与缺乏内含子降解能力的突变体进行了比较。我们的方法鉴定出了76%的已知内含子,证实了18个先前预测的内含子,并发现了9个以前未被发现的内含子。此外,我们发现所有13个减数分裂特异性内含子酵母基因都经历了调控剪接,这为酵母细胞分化所涉及的基因提供了转录后调控。此外,我们发现,在丰富培养基中指数生长期间,酵母中约16%的内含子基因剪接不完全,这表明减数分裂不是唯一受剪接调控的生物学过程。我们的平铺阵列分析提供了酵母中剪接转录组的快照。这种强大的方法可用于探索环境不同的剪接反应,并且应该很容易适用于包括人类在内的其他生物体的研究。

相似文献

5
Meiosis-specific RNA splicing in yeast.酵母中的减数分裂特异性RNA剪接。
Cell. 1991 Sep 20;66(6):1257-68. doi: 10.1016/0092-8674(91)90047-3.

引用本文的文献

3
Meiosis in budding yeast.减数分裂在出芽酵母中。
Genetics. 2023 Oct 4;225(2). doi: 10.1093/genetics/iyad125.
8
The Paf1 Complex Broadly Impacts the Transcriptome of .Paf1 复合物广泛影响. 的转录组。
Genetics. 2019 Jul;212(3):711-728. doi: 10.1534/genetics.119.302262. Epub 2019 May 15.
10
Excised linear introns regulate growth in yeast.切除线性内含子可调控酵母生长。
Nature. 2019 Jan;565(7741):606-611. doi: 10.1038/s41586-018-0828-1. Epub 2019 Jan 16.

本文引用的文献

1
A large-scale full-length cDNA analysis to explore the budding yeast transcriptome.一项探索芽殖酵母转录组的大规模全长cDNA分析。
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17846-51. doi: 10.1073/pnas.0605645103. Epub 2006 Nov 13.
3
Introns regulate RNA and protein abundance in yeast.内含子调控酵母中的RNA和蛋白质丰度。
Genetics. 2006 Sep;174(1):511-8. doi: 10.1534/genetics.106.058560. Epub 2006 Jul 2.
4
A high-resolution map of transcription in the yeast genome.酵母基因组转录的高分辨率图谱。
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5320-5. doi: 10.1073/pnas.0601091103. Epub 2006 Mar 28.
8
How did alternative splicing evolve?可变剪接是如何进化的?
Nat Rev Genet. 2004 Oct;5(10):773-82. doi: 10.1038/nrg1451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验