Gruart Agnès, Sciarretta Carla, Valenzuela-Harrington Mauricio, Delgado-García José M, Minichiello Liliana
División de Neurociencias, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
Learn Mem. 2007 Jan-Feb;14(1):54-62. doi: 10.1101/lm.428307.
Previous in vitro studies have characterized the electrophysiological properties and molecular events associated with long-term potentiation (LTP), but as yet there are no in vivo data from molecular-level dissection that directly identify LTP as the biological substrate for learning and memory. Understanding whether the molecular pathways required for learning are also those generating LTP when measured directly on the relevant circuit of a learning animal is clearly important, although so far has proved technically difficult. Here, for the first time, we combine highly defined genetic mouse models with behavior and in vivo recordings. We recorded the activity-dependent changes taking place at the CA3-CA1 synapses during the acquisition and extinction of a simple form of an associative learning task in mice carrying point mutations on specific docking sites of TrkB receptors (trkB(SHC), trkB(PLC)). The learning task consisted of a classical eyeblink conditioning using a trace paradigm. The conditioned stimulus (CS) consisted of a tone and was followed by a periorbital electrical shock as an unconditioned stimulus (US). The US started 500 msec after the end of the CS. We show that a single pulse presented to the Schaffer collateral-commissural pathway during the CS-US interval evoked a monosynaptic field excitatory postsynaptic potential (fEPSP) at the CA1 pyramidal cells, with a slope linearly related to learning evolution in controls and trkB(SHC) mutants, but the relationship was impaired in trkB(PLC) mice. These data support a link between the PLCgamma-docking site downstream of TrkB and the activity-dependent synaptic changes evoked at the CA3-CA1 synapses during associative learning in conscious mice, and indicate that TrkB PLCgamma-site-activated molecular pathway(s) underlie both associative learning and LTP triggered at the CA3-CA1 synapse.
以往的体外研究已经对与长时程增强(LTP)相关的电生理特性和分子事件进行了表征,但目前尚无来自分子水平剖析的体内数据能够直接将LTP确定为学习和记忆的生物学基础。了解学习所需的分子途径是否也是在学习动物的相关回路中直接测量时产生LTP的途径显然很重要,尽管到目前为止已证明这在技术上具有挑战性。在这里,我们首次将高度明确的基因小鼠模型与行为和体内记录相结合。我们记录了在携带TrkB受体特定对接位点点突变(trkB(SHC)、trkB(PLC))的小鼠进行简单形式的联想学习任务的获取和消退过程中,CA3-CA1突触处发生的活动依赖性变化。学习任务包括使用痕迹范式的经典眨眼条件反射。条件刺激(CS)由一个音调组成,随后是眶周电击作为非条件刺激(US)。US在CS结束后500毫秒开始。我们发现,在CS-US间隔期间向Schaffer侧支-连合通路施加单个脉冲会在CA1锥体细胞处诱发单突触场兴奋性突触后电位(fEPSP),其斜率在对照组和trkB(SHC)突变体中与学习进展呈线性相关,但在trkB(PLC)小鼠中这种关系受损。这些数据支持了TrkB下游的PLCγ对接位点与清醒小鼠联想学习期间CA3-CA1突触处诱发的活动依赖性突触变化之间的联系,并表明TrkB PLCγ位点激活的分子途径是联想学习和CA3-CA1突触处触发的LTP的基础。