Suppr超能文献

组织工程与再生医学中天然来源的可生物降解系统:现状与一些发展趋势

Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends.

作者信息

Mano J F, Silva G A, Azevedo H S, Malafaya P B, Sousa R A, Silva S S, Boesel L F, Oliveira J M, Santos T C, Marques A P, Neves N M, Reis R L

机构信息

3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.

出版信息

J R Soc Interface. 2007 Dec 22;4(17):999-1030. doi: 10.1098/rsif.2007.0220.

Abstract

The fields of tissue engineering and regenerative medicine aim at promoting the regeneration of tissues or replacing failing or malfunctioning organs, by means of combining a scaffold/support material, adequate cells and bioactive molecules. Different materials have been proposed to be used as both three-dimensional porous scaffolds and hydrogel matrices for distinct tissue engineering strategies. Among them, polymers of natural origin are one of the most attractive options, mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this review, the most studied and promising and recently proposed naturally derived polymers that have been suggested for tissue engineering applications are described. Different classes of such type of polymers and their blends with synthetic polymers are analysed, with special focus on polysaccharides and proteins, the systems that are more inspired by the ECM. The adaptation of conventional methods or non-conventional processing techniques for processing scaffolds from natural origin based polymers is reviewed. The use of particles, membranes and injectable systems from such kind of materials is also overviewed, especially what concerns the present status of the research that should lead towards their final application. Finally, the biological performance of tissue engineering constructs based on natural-based polymers is discussed, using several examples for different clinically relevant applications.

摘要

组织工程和再生医学领域旨在通过结合支架/支撑材料、合适的细胞和生物活性分子,促进组织再生或替代功能衰竭或出现故障的器官。不同的材料已被提议用作不同组织工程策略的三维多孔支架和水凝胶基质。其中,天然来源的聚合物是最具吸引力的选择之一,主要是因为它们与细胞外基质(ECM)相似、化学多功能性以及通常良好的生物学性能。在本综述中,描述了已被建议用于组织工程应用的研究最多、最有前景且最近提出的天然衍生聚合物。分析了此类聚合物的不同类别及其与合成聚合物的共混物,特别关注多糖和蛋白质,这两类系统更受ECM的启发。综述了用于加工天然来源聚合物支架的传统方法或非常规加工技术的适应性。还概述了此类材料制成的颗粒、膜和可注射系统的应用,特别是涉及应导向其最终应用的研究现状。最后,使用不同临床相关应用的几个例子,讨论了基于天然聚合物的组织工程构建体的生物学性能。

相似文献

2
Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications.
Adv Drug Deliv Rev. 2007 May 30;59(4-5):207-33. doi: 10.1016/j.addr.2007.03.012. Epub 2007 Apr 6.
3
Polymer-based microparticles in tissue engineering and regenerative medicine.
Biotechnol Prog. 2011 Jul;27(4):897-912. doi: 10.1002/btpr.618. Epub 2011 May 16.
4
Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine.
Biomed Res Int. 2015;2015:821279. doi: 10.1155/2015/821279. Epub 2015 Oct 4.
6
Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends.
Adv Exp Med Biol. 2018;1119:1-19. doi: 10.1007/5584_2018_278.
7
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
Biotechnol Adv. 2017 Sep;35(5):530-544. doi: 10.1016/j.biotechadv.2017.05.006. Epub 2017 May 27.
8
Update on the main use of biomaterials and techniques associated with tissue engineering.
Drug Discov Today. 2018 Aug;23(8):1474-1488. doi: 10.1016/j.drudis.2018.03.013. Epub 2018 Mar 30.
9
Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.
IEEE Trans Nanobioscience. 2012 Mar;11(1):3-14. doi: 10.1109/TNB.2011.2179554. Epub 2012 Jan 23.
10
Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.
Adv Mater. 2015 Feb 18;27(7):1143-69. doi: 10.1002/adma.201403354. Epub 2015 Jan 10.

引用本文的文献

1
Smart and Biodegradable Polymers in Tissue Engineering and Interventional Devices: A Brief Review.
Polymers (Basel). 2025 Jul 18;17(14):1976. doi: 10.3390/polym17141976.
2
Advances in applications of low-dimensional piezoelectric materials in musculoskeletal system.
Mater Today Bio. 2025 Jul 7;33:102065. doi: 10.1016/j.mtbio.2025.102065. eCollection 2025 Aug.
3
Zebrafish caudal fin model to investigate the role of Cissus quadrangularis, bioceramics, and tendon extracellular matrix scaffolds in bone regeneration.
J Oral Biol Craniofac Res. 2025 Jul-Aug;15(4):809-815. doi: 10.1016/j.jobcr.2025.05.009. Epub 2025 Jun 7.
5
Biomaterial-based drug delivery systems in the treatment of inner ear disorders.
J Nanobiotechnology. 2025 Apr 17;23(1):297. doi: 10.1186/s12951-025-03368-0.
7
Three-Dimensional Bioprinting for Intervertebral Disc Regeneration.
J Funct Biomater. 2025 Mar 14;16(3):105. doi: 10.3390/jfb16030105.
8
Pioneering the Future of Oral Healthcare: Bioprinting and Its Transformative Clinical Potential in Dentistry.
Cureus. 2025 Feb 15;17(2):e79030. doi: 10.7759/cureus.79030. eCollection 2025 Feb.
9
Artificial Biopolymers Derived from Transgenic Plants: Applications and Properties-A Review.
Int J Mol Sci. 2024 Dec 19;25(24):13628. doi: 10.3390/ijms252413628.
10
Potential of Nature-derived Biopolymers for Oral Applications- A Mini-Review.
Mini Rev Med Chem. 2025;25(7):529-538. doi: 10.2174/0113895575359305241218113847.

本文引用的文献

1
Review: Hydrogels for cell immobilization.
Biotechnol Bioeng. 1996 May 20;50(4):357-64. doi: 10.1002/(SICI)1097-0290(19960520)50:4<357::AID-BIT2>3.0.CO;2-K.
3
Cell density alters matrix accumulation in two distinct fractions and the mechanical integrity of alginate-chondrocyte constructs.
Acta Biomater. 2005 Nov;1(6):625-33. doi: 10.1016/j.actbio.2005.07.009. Epub 2005 Sep 13.
5
Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering.
J Mater Sci Mater Med. 2005 Dec;16(12):1099-104. doi: 10.1007/s10856-005-4713-8.
7
Selection of cell source for ligament tissue engineering.
Cell Transplant. 2005;14(8):573-83. doi: 10.3727/000000005783982819.
8
Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model.
Biomaterials. 2006 Mar;27(9):1917-23. doi: 10.1016/j.biomaterials.2005.11.013. Epub 2005 Nov 28.
9
Biofabrication with chitosan.
Biomacromolecules. 2005 Nov-Dec;6(6):2881-94. doi: 10.1021/bm050410l.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验