Suppr超能文献

基于汇总的区域时间序列数据的综合事故模型。

An aggregate accident model based on pooled, regional time-series data.

作者信息

Fridstrøm L, Ingebrigtsen S

机构信息

Institute of Transport Economics, Oslo, Norway.

出版信息

Accid Anal Prev. 1991 Oct;23(5):363-78. doi: 10.1016/0001-4575(91)90057-c.

Abstract

The determinants of personal injury road accidents and their severity are studied by means of generalized Poisson regression models estimated on the basis of combined cross-section/time-series data. Monthly data have been assembled for 18 Norwegian counties (every county but one), covering the period from January 1974 until December 1986. A rather wide range of potential explanatory factors are taken into account, including road use (exposure), weather, daylight, traffic density, road investment and maintenance expenditure, accident reporting routines, vehicle inspection, law enforcement, seat belt usage, proportion of inexperienced drivers, and alcohol sales. Separate probability models are estimated for the number of personal injury accidents, fatal accidents, injury victims, death victims, car occupants injured, and bicyclists and pedestrians injured. The fraction of personal injury accidents that are fatal is interpreted as an average severity measure and studied by means of a binomial logit model.

摘要

利用基于混合横截面/时间序列数据估计的广义泊松回归模型,对人身伤害道路事故的决定因素及其严重程度进行了研究。收集了18个挪威郡(除一个郡外的每个郡)的月度数据,涵盖1974年1月至1986年12月期间。考虑了相当广泛的潜在解释因素,包括道路使用(暴露)、天气、日照、交通密度、道路投资和维护支出、事故报告程序、车辆检查、执法、安全带使用、无经验驾驶员比例以及酒精销售情况。针对人身伤害事故数量、致命事故、受伤受害者、死亡受害者、车内乘客受伤情况以及骑自行车者和行人受伤情况分别估计了概率模型。将致命的人身伤害事故比例解释为平均严重程度度量,并通过二项式logit模型进行研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验