Suppr超能文献

从L-鼠李糖-1-磷酸醛缩酶(RhaD)体内筛选用于L-鼠李酮糖醛缩酶的定向进化。

In vivo selection for the directed evolution of L-rhamnulose aldolase from L-rhamnulose-1-phosphate aldolase (RhaD).

作者信息

Sugiyama Masakazu, Hong Zhangyong, Greenberg William A, Wong Chi-Huey

机构信息

Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.

出版信息

Bioorg Med Chem. 2007 Sep 1;15(17):5905-11. doi: 10.1016/j.bmc.2007.05.062. Epub 2007 Jun 2.

Abstract

Dihydroxyacetone phosphate (DHAP)-dependent aldolases have been widely used for organic synthesis. The major drawback of DHAP-dependent aldolases is their strict donor substrate specificity toward DHAP, which is expensive and unstable. Here we report the development of an in vivo selection system for the directed evolution of the DHAP-dependent aldolase, L-rhamnulose-1-phosphate aldolase (RhaD), to alter its donor substrate specificity from DHAP to dihydroxyacetone (DHA). We also report preliminary results on mutants that were discovered with this screen. A strain deficient in the L-rhamnose metabolic pathway in Escherichia coli (DeltarhaDAB, DE3) was constructed and used as a selection host strain. Co-expression of L-rhamnose isomerase (rhaA) and rhaD in the selection host did not restore its growth on minimal plate supplemented with L-rhamnose as a sole carbon source, because of the lack of L-rhamnulose kinase (RhaB) activity and the inability of WT RhaD aldolase to use unphosphorylated L-rhamnulose as a substrate. Use of this selection host and co-expression vector system gives us an in vivo selection for the desired mutant RhaD which can cleave unphosphorylated L-rhamnulose and allow the mutant to grow in the minimal media. An error-prone PCR (ep-PCR) library of rhaD gene on the co-expression vector was constructed and introduced into the rha-mutant, and survivors were selected in minimal media with l-rhamnose (MMRha media). An initial round of screening gave mutants allowing the selection strain to grow on MMRha plates. This in vivo selection system allows rapid screening of mutated aldolases that can utilize dihydroxyacetone as a donor substrate.

摘要

磷酸二羟丙酮(DHAP)依赖性醛缩酶已被广泛用于有机合成。DHAP依赖性醛缩酶的主要缺点是它们对DHAP具有严格的供体底物特异性,而DHAP既昂贵又不稳定。在此,我们报告了一种体内选择系统的开发,用于对DHAP依赖性醛缩酶L-鼠李糖-1-磷酸醛缩酶(RhaD)进行定向进化,以将其供体底物特异性从DHAP改变为二羟基丙酮(DHA)。我们还报告了通过该筛选发现的突变体的初步结果。构建了大肠杆菌中L-鼠李糖代谢途径缺陷的菌株(DeltarhaDAB,DE3)并用作选择宿主菌株。由于缺乏L-鼠李糖激酶(RhaB)活性且野生型RhaD醛缩酶无法使用未磷酸化的L-鼠李糖作为底物,因此在选择宿主中共同表达L-鼠李糖异构酶(rhaA)和rhaD并不能恢复其在以L-鼠李糖作为唯一碳源的基本平板上的生长。使用这种选择宿主和共表达载体系统,我们可以在体内选择所需的突变体RhaD,该突变体可以切割未磷酸化的L-鼠李糖并使突变体在基本培养基中生长。构建了共表达载体上rhaD基因的易错PCR(ep-PCR)文库,并将其导入rha突变体中,在含有L-鼠李糖的基本培养基(MMRha培养基)中选择存活菌株。第一轮筛选得到了使选择菌株能够在MMRha平板上生长的突变体。这种体内选择系统允许快速筛选能够利用二羟基丙酮作为供体底物的突变醛缩酶。

相似文献

1
In vivo selection for the directed evolution of L-rhamnulose aldolase from L-rhamnulose-1-phosphate aldolase (RhaD).
Bioorg Med Chem. 2007 Sep 1;15(17):5905-11. doi: 10.1016/j.bmc.2007.05.062. Epub 2007 Jun 2.
2
Identification of the rhaA, rhaB and rhaD gene products from Escherichia coli K-12.
FEMS Microbiol Lett. 1989 Dec;53(3):253-7. doi: 10.1016/0378-1097(89)90226-7.
3
Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases.
Carbohydr Res. 2017 Nov 27;452:108-115. doi: 10.1016/j.carres.2017.10.009. Epub 2017 Oct 18.
4
L-lyxose metabolism employs the L-rhamnose pathway in mutant cells of Escherichia coli adapted to grow on L-lyxose.
J Bacteriol. 1991 Aug;173(16):5144-50. doi: 10.1128/jb.173.16.5144-5150.1991.
5
Synthesis of Branched-Chain Sugars with a DHAP-Dependent Aldolase: Ketones are Electrophile Substrates of Rhamnulose-1-phosphate Aldolases.
Angew Chem Int Ed Engl. 2018 May 4;57(19):5467-5471. doi: 10.1002/anie.201712851. Epub 2018 Mar 30.
6
7
Cascade synthesis of rare ketoses by whole cells based on L-rhamnulose-1-phosphate aldolase.
Enzyme Microb Technol. 2020 Feb;133:109456. doi: 10.1016/j.enzmictec.2019.109456. Epub 2019 Oct 24.
8
Structure and catalytic mechanism of L-rhamnulose-1-phosphate aldolase.
Biochemistry. 2003 Sep 16;42(36):10560-8. doi: 10.1021/bi0349266.
9
Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli.
J Bacteriol. 1987 Aug;169(8):3712-9. doi: 10.1128/jb.169.8.3712-3719.1987.
10
Biosynthesis of dendroketose from different carbon sources using in vitro and in vivo metabolic engineering strategies.
Biotechnol Biofuels. 2018 Oct 25;11:290. doi: 10.1186/s13068-018-1293-7. eCollection 2018.

引用本文的文献

2
Engineering aldolases as biocatalysts.
Curr Opin Chem Biol. 2014 Apr;19(100):25-33. doi: 10.1016/j.cbpa.2013.12.010. Epub 2014 Jan 4.
3
DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications.
Extremophiles. 2014 Jan;18(1):1-13. doi: 10.1007/s00792-013-0593-x. Epub 2013 Oct 29.
4
Programmable in vivo selection of arbitrary DNA sequences.
PLoS One. 2012;7(11):e47795. doi: 10.1371/journal.pone.0047795. Epub 2012 Nov 14.
5
One-pot four-enzyme synthesis of ketoses with fructose 1,6-bisphosphate aldolases from Staphylococcus carnosus and rabbit muscle.
Carbohydr Res. 2012 Aug 1;357:143-6. doi: 10.1016/j.carres.2012.05.007. Epub 2012 May 15.
6
Enzymes for the biocatalytic production of rare sugars.
J Ind Microbiol Biotechnol. 2012 Jun;39(6):823-34. doi: 10.1007/s10295-012-1089-x. Epub 2012 Feb 14.
8
Enzymatic synthesis of D-sorbose and D-psicose with aldolase RhaD: effect of acceptor configuration on enzyme stereoselectivity.
Bioorg Med Chem Lett. 2011 Dec 1;21(23):7081-4. doi: 10.1016/j.bmcl.2011.09.087. Epub 2011 Sep 29.
9
Synthesis of rare sugars with L-fuculose-1-phosphate aldolase (FucA) from Thermus thermophilus HB8.
Bioorg Med Chem Lett. 2011 Sep 1;21(17):5084-7. doi: 10.1016/j.bmcl.2011.03.072. Epub 2011 Mar 23.
10
Directed evolution of aldolases for exploitation in synthetic organic chemistry.
Arch Biochem Biophys. 2008 Jun 15;474(2):318-30. doi: 10.1016/j.abb.2008.01.005. Epub 2008 Jan 19.

本文引用的文献

1
New methods for the high-throughput screening of enantioselective catalysts and biocatalysts.
Angew Chem Int Ed Engl. 2002 Apr 15;41(8):1335-8. doi: 10.1002/1521-3773(20020415)41:8<1335::aid-anie1335>3.0.co;2-a.
2
Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase.
Biotechnol J. 2006 May;1(5):537-48. doi: 10.1002/biot.200600020.
4
Microbial aldolases as C-C bonding enzymes--unknown treasures and new developments.
Appl Microbiol Biotechnol. 2006 Jul;71(3):253-64. doi: 10.1007/s00253-006-0422-6. Epub 2006 Apr 14.
5
Evolving strategies for enzyme engineering.
Curr Opin Struct Biol. 2005 Aug;15(4):447-52. doi: 10.1016/j.sbi.2005.06.004.
6
Directed evolution of D-sialic acid aldolase to L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase.
Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9122-6. doi: 10.1073/pnas.0504033102. Epub 2005 Jun 20.
9
Enantioselective biocatalysis optimized by directed evolution.
Curr Opin Biotechnol. 2004 Aug;15(4):305-13. doi: 10.1016/j.copbio.2004.06.007.
10
Directed evolution of aldolases.
Methods Enzymol. 2004;388:224-38. doi: 10.1016/S0076-6879(04)88020-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验