School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
Nat Commun. 2022 Aug 5;13(1):4572. doi: 10.1038/s41467-022-32279-z.
A range of perceptual and cognitive processes have been characterized from the perspective of probabilistic representations and inference. To understand the neural circuit mechanism underlying these probabilistic computations, we develop a theory based on complex spatiotemporal dynamics of neural population activity. We first implement and explore this theory in a biophysically realistic, spiking neural circuit. Population activity patterns emerging from the circuit capture realistic variability or fluctuations of neural dynamics both in time and in space. These activity patterns implement a type of probabilistic computations that we name fractional neural sampling (FNS). We further develop a mathematical model to reveal the algorithmic nature of FNS and its computational advantages for representing multimodal distributions, a major challenge faced by existing theories. We demonstrate that FNS provides a unified account of a diversity of experimental observations of neural spatiotemporal dynamics and perceptual processes such as visual perception inference, and that FNS makes experimentally testable predictions.
从概率表示和推理的角度,已经描述了一系列感知和认知过程。为了理解这些概率计算的神经回路机制,我们基于神经群体活动的复杂时空动力学,提出了一种理论。我们首先在一个生理上逼真的、尖峰神经元电路中实现和探索了这一理论。从电路中涌现出的群体活动模式,捕捉到了神经动力学在时间和空间上的现实变异性或波动。这些活动模式实现了一种我们称之为分数神经抽样(Fractional Neural Sampling,FNS)的概率计算。我们进一步开发了一个数学模型,揭示了 FNS 的算法本质及其在表示多模态分布方面的计算优势,这是现有理论面临的主要挑战。我们证明了 FNS 为神经时空动力学和感知过程的各种实验观察提供了一个统一的解释,例如视觉感知推理,并且 FNS 做出了可通过实验检验的预测。