Suppr超能文献

图像配准:最大似然法、最小熵法与深度学习。

Image registration: Maximum likelihood, minimum entropy and deep learning.

作者信息

Sedghi Alireza, O'Donnell Lauren J, Kapur Tina, Learned-Miller Erik, Mousavi Parvin, Wells William M

机构信息

Medical Informatics Laboratory, Queen's University, Kingston, Canada.

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.

出版信息

Med Image Anal. 2021 Apr;69:101939. doi: 10.1016/j.media.2020.101939. Epub 2020 Dec 18.

Abstract

In this work, we propose a theoretical framework based on maximum profile likelihood for pairwise and groupwise registration. By an asymptotic analysis, we demonstrate that maximum profile likelihood registration minimizes an upper bound on the joint entropy of the distribution that generates the joint image data. Further, we derive the congealing method for groupwise registration by optimizing the profile likelihood in closed form, and using coordinate ascent, or iterative model refinement. We also describe a method for feature based registration in the same framework and demonstrate it on groupwise tractographic registration. In the second part of the article, we propose an approach to deep metric registration that implements maximum likelihood registration using deep discriminative classifiers. We show further that this approach can be used for maximum profile likelihood registration to discharge the need for well-registered training data, using iterative model refinement. We demonstrate that the method succeeds on a challenging registration problem where the standard mutual information approach does not perform well.

摘要

在这项工作中,我们提出了一个基于最大轮廓似然的成对和分组配准理论框架。通过渐近分析,我们证明最大轮廓似然配准可使生成联合图像数据的分布的联合熵的上界最小化。此外,我们通过以封闭形式优化轮廓似然,并使用坐标上升或迭代模型细化,推导出分组配准的凝聚方法。我们还在同一框架中描述了一种基于特征的配准方法,并在分组纤维束成像配准中进行了演示。在文章的第二部分,我们提出了一种深度度量配准方法,该方法使用深度判别分类器实现最大似然配准。我们进一步表明,该方法可用于最大轮廓似然配准,以消除对配准良好的训练数据的需求,使用迭代模型细化。我们证明该方法在具有挑战性的配准问题上取得了成功,而标准互信息方法在该问题上表现不佳。

相似文献

4
PCA-based groupwise image registration for quantitative MRI.基于主成分分析的定量 MRI 组间图像配准。
Med Image Anal. 2016 Apr;29:65-78. doi: 10.1016/j.media.2015.12.004. Epub 2015 Dec 19.
7
Learning deep similarity metric for 3D MR-TRUS image registration.学习用于 3D MR-TRUS 图像配准的深度相似性度量。
Int J Comput Assist Radiol Surg. 2019 Mar;14(3):417-425. doi: 10.1007/s11548-018-1875-7. Epub 2018 Oct 31.
9
Similarity metrics for groupwise non-rigid registration.用于逐组非刚性配准的相似性度量
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):544-52. doi: 10.1007/978-3-540-75759-7_66.

引用本文的文献

1
An overview of artificial intelligence in medical physics and radiation oncology.医学物理与放射肿瘤学中的人工智能概述。
J Natl Cancer Cent. 2023 Aug 11;3(3):211-221. doi: 10.1016/j.jncc.2023.08.002. eCollection 2023 Sep.
4
A review of deep learning-based deformable medical image registration.基于深度学习的可变形医学图像配准综述。
Front Oncol. 2022 Dec 7;12:1047215. doi: 10.3389/fonc.2022.1047215. eCollection 2022.

本文引用的文献

2
Learning a Probabilistic Model for Diffeomorphic Registration.学习用于可变形配准的概率模型。
IEEE Trans Med Imaging. 2019 Sep;38(9):2165-2176. doi: 10.1109/TMI.2019.2897112. Epub 2019 Feb 4.
5
Learning deep similarity metric for 3D MR-TRUS image registration.学习用于 3D MR-TRUS 图像配准的深度相似性度量。
Int J Comput Assist Radiol Surg. 2019 Mar;14(3):417-425. doi: 10.1007/s11548-018-1875-7. Epub 2018 Oct 31.
7
Diffusion MRI fiber tractography of the brain.脑弥散磁共振成像纤维束追踪技术。
NMR Biomed. 2019 Apr;32(4):e3785. doi: 10.1002/nbm.3785. Epub 2017 Sep 25.
8
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
9
Quicksilver: Fast predictive image registration - A deep learning approach.快银:快速预测图像配准 - 深度学习方法。
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.
10
Deep Learning in Medical Image Analysis.医学图像分析中的深度学习
Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验