Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America.
PLoS One. 2007 Sep 5;2(9):e824. doi: 10.1371/journal.pone.0000824.
A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The "additive" model assumes no interaction; the "minimax" model assumes maximum relative risk due to any vector in a cell; and the "competitive exclusion" model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease.
流行病学的一个核心理论目标是构建疾病流行和风险的空间模型,包括传染病潜在传播的地图。我们提供了三张代表非洲疟疾相对风险的全大陆地图,这些地图基于媒介物种的生态位模型和空间分辨率为 1 角分(约 4 平方公里的 9185275 个单元格)的风险分析。我们使用最大熵方法,根据 1980 年以来的物种出现记录、19 个气候变量、海拔和土地覆盖数据(分为 14 类),为 10 种疟疾媒介物种构建了生态位模型。对于其中的 7 种媒介(冈比亚按蚊、A.funestus、A.melas、A.merus、A.moucheti、A.nili 和 A.paludis),这是首次发表的生态位模型。我们预测,中非的 A. arabiensis 和 A. gambiae 栖息地较差,而南非的 A. quadriannulatus 和 A. arabiensis 栖息地受限,这与实地专家批评先前模型时提出的观点一致。生态位模型的结果被纳入三个相对风险模型中,这些模型假设媒介物种之间存在不同的生态相互作用。“加性”模型假设没有相互作用;“最小最大”模型假设由于单元格中任何媒介而产生的最大相对风险;“竞争排斥”模型假设由于单元格中最适合的媒介而产生的相对风险。所有模型都包含媒介的嗜人性和人类种群密度的空间变化。从这些模型中生成相对风险图。所有模型都预测人类种群密度是决定疟疾风险的关键因素。我们构建相对风险图的方法同样具有通用性。我们讨论了这里报告的相对风险图的局限性,以及改进它们所需的额外数据。这里开发的方案可用于任何其他虫媒传染病。