Auton Matthew, Bolen D Wayne
Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.
Methods Enzymol. 2007;428:397-418. doi: 10.1016/S0076-6879(07)28023-1.
A primary thermodynamic goal in protein biochemistry is to attain a predictive understanding of the energetic changes responsible for solvent-induced folding and unfolding. This chapter demonstrates the use of Tanford's transfer model to predict solvent-dependent cooperative protein folding/unfolding free energy changes (m values). This approach provides a thermodynamic description of these free energy changes in terms of individual contributions from the peptide backbone and residue side chains. The quantitative success of the transfer model has been hindered for many years because of unresolved issues involving proper measurement of the group transfer-free energies of amino acid side chains and the peptide backbone unit. This chapter demonstrates what is necessary to design experiments properly so that reliable values of group transfer-free energies are obtainable. It then demonstrates how to derive a prediction of the m value for the description of protein folding/unfolding cooperativity and that the calculated values using the transfer model agree quite well with experimentally measured values.
蛋白质生物化学中的一个主要热力学目标是对溶剂诱导的折叠和去折叠所涉及的能量变化达成预测性理解。本章展示了使用坦福德的转移模型来预测溶剂依赖性协同蛋白质折叠/去折叠自由能变化(m值)。这种方法从肽主链和残基侧链的个体贡献方面提供了这些自由能变化的热力学描述。多年来,转移模型在定量方面的成功一直受到阻碍,原因是涉及氨基酸侧链和肽主链单元的基团转移自由能的正确测量存在未解决的问题。本章说明了正确设计实验所需的条件,以便能够获得可靠的基团转移自由能值。然后展示了如何推导用于描述蛋白质折叠/去折叠协同性的m值预测,并且使用转移模型计算的值与实验测量值相当吻合。