Suppr超能文献

层级相互作用如何使无膜细胞器像时钟一样精确运作。

How Hierarchical Interactions Make Membraneless Organelles Tick Like Clockwork.

机构信息

Department of Physics, Kansas State University, Manhattan, KS 66506, USA.

National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Trends Biochem Sci. 2021 Jul;46(7):525-534. doi: 10.1016/j.tibs.2020.12.011. Epub 2021 Jan 20.

Abstract

Biomolecular condensates appear throughout the cell, serving many different biochemical functions. We argue that condensate functionality is optimized when the interactions driving condensation vary widely in affinity. Strong interactions provide structural specificity needed to encode functional properties but carry the risk of kinetic arrest, while weak interactions allow the system to remain dynamic but do not restrict the conformational ensemble enough to sustain specific functional features. To support our opinion, we describe illustrative examples of the interplay of strong and weak interactions that are found in the nucleolus, SPOP/DAXX condensates, polySUMO/polySIM condensates, chromatin, and stress granules. The common feature of these systems is a hierarchical assembly motif in which weak, transient interactions condense structurally defined functional units.

摘要

生物分子凝聚体遍布细胞各处,发挥着许多不同的生化功能。我们认为,当驱动凝聚的相互作用在亲和力上差异很大时,凝聚体的功能就能得到优化。强相互作用提供了编码功能特性所需的结构特异性,但存在动力学停滞的风险,而弱相互作用允许系统保持动态,但不足以限制构象集合以维持特定的功能特征。为了支持我们的观点,我们描述了在核仁、SPOP/DAXX 凝聚体、多 SUMO/多 SIM 凝聚体、染色质和应激颗粒中发现的强相互作用和弱相互作用相互作用的说明性例子。这些系统的共同特征是一种层次组装模式,其中弱的、短暂的相互作用凝聚了结构定义的功能单元。

相似文献

2
Biological Phase Separation and Biomolecular Condensates in Plants.植物中的生物相分离和生物分子凝聚物。
Annu Rev Plant Biol. 2021 Jun 17;72:17-46. doi: 10.1146/annurev-arplant-081720-015238. Epub 2021 Mar 8.
3
Composition-dependent thermodynamics of intracellular phase separation.依赖于组成的细胞内相分离的热力学。
Nature. 2020 May;581(7807):209-214. doi: 10.1038/s41586-020-2256-2. Epub 2020 May 6.
4
Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.生物分子凝聚物序列依赖性相行为的理论
Biochemistry. 2018 May 1;57(17):2499-2508. doi: 10.1021/acs.biochem.8b00058. Epub 2018 Mar 13.
7
Who's In and Who's Out-Compositional Control of Biomolecular Condensates.谁进谁出——生物分子凝聚物的组成控制。
J Mol Biol. 2018 Nov 2;430(23):4666-4684. doi: 10.1016/j.jmb.2018.08.003. Epub 2018 Aug 9.
8
Dissecting the complexity of biomolecular condensates.解析生物分子凝聚物的复杂性。
Biochem Soc Trans. 2020 Dec 18;48(6):2591-2602. doi: 10.1042/BST20200351.
9

引用本文的文献

7
Molecular determinants of condensate composition.凝聚物组成的分子决定因素。
Mol Cell. 2025 Jan 16;85(2):290-308. doi: 10.1016/j.molcel.2024.12.021.
10
Keeping membraneless organelles apart.使无膜细胞器保持分离状态。
Nat Cell Biol. 2023 Nov;25(11):1566-1567. doi: 10.1038/s41556-023-01265-y.

本文引用的文献

1
Structure-Function Properties in Disordered Condensates.无序凝聚体的结构-功能特性。
J Phys Chem B. 2021 Jan 14;125(1):467-476. doi: 10.1021/acs.jpcb.0c11057. Epub 2021 Jan 4.
3
Thermodynamics of Huntingtin Aggregation.亨廷顿蛋白聚集的热力学
Biophys J. 2020 Jun 16;118(12):2989-2996. doi: 10.1016/j.bpj.2020.05.013. Epub 2020 May 20.
4
Composition-dependent thermodynamics of intracellular phase separation.依赖于组成的细胞内相分离的热力学。
Nature. 2020 May;581(7807):209-214. doi: 10.1038/s41586-020-2256-2. Epub 2020 May 6.
10
Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions.细胞内相转变的复杂生物学的物理原理。
Annu Rev Biophys. 2020 May 6;49:107-133. doi: 10.1146/annurev-biophys-121219-081629. Epub 2020 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验