Schmidt Heather L Frericks, Sperling Lindsay J, Gao Yi Gui, Wylie Benjamin J, Boettcher John M, Wilson Scott R, Rienstra Chad M
Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61821, USA.
J Phys Chem B. 2007 Dec 27;111(51):14362-9. doi: 10.1021/jp075531p. Epub 2007 Dec 4.
The study of micro- or nanocrystalline proteins by magic-angle spinning (MAS) solid-state NMR (SSNMR) gives atomic-resolution insight into structure in cases when single crystals cannot be obtained for diffraction studies. Subtle differences in the local chemical environment around the protein, including the characteristics of the cosolvent and the buffer, determine whether a protein will form single crystals. The impact of these small changes in formulation is also evident in the SSNMR spectra; however, the changes lead only to correspondingly subtle changes in the spectra. Here, we demonstrate that several formulations of GB1 microcrystals yield very high quality SSNMR spectra, although only a subset of conditions enable growth of single crystals. We have characterized these polymorphs by X-ray powder diffraction and assigned the SSNMR spectra. Assignments of the 13C and 15N SSNMR chemical shifts confirm that the backbone structure is conserved, indicative of a common protein fold, but side chain chemical shifts are changed on the surface of the protein, in a manner dependent upon crystal packing and electrostatic interactions with salt in the mother liquor. Our results demonstrate the ability of SSNMR to reveal minor structural differences among crystal polymorphs. This ability has potential practical utility for studying the formulation chemistry of industrial and therapeutic proteins, as well as for deriving fundamental insights into the phenomenon of single-crystal growth.
通过魔角旋转(MAS)固态核磁共振(SSNMR)对微晶或纳米晶蛋白质进行研究,在无法获得单晶进行衍射研究的情况下,能提供原子分辨率的结构信息。蛋白质周围局部化学环境的细微差异,包括助溶剂和缓冲液的特性,决定了蛋白质是否会形成单晶。这些配方中的微小变化对固态核磁共振谱也有明显影响;然而,这些变化只会导致谱图相应的细微变化。在这里,我们证明了GB1微晶的几种配方能产生非常高质量的固态核磁共振谱,尽管只有一部分条件能使单晶生长。我们通过X射线粉末衍射对这些多晶型物进行了表征,并对固态核磁共振谱进行了归属。13C和15N固态核磁共振化学位移的归属证实,主链结构是保守的,表明存在共同的蛋白质折叠,但侧链化学位移在蛋白质表面发生了变化,其方式取决于晶体堆积以及与母液中盐的静电相互作用。我们的结果证明了固态核磁共振揭示晶体多晶型物之间微小结构差异的能力。这种能力对于研究工业和治疗性蛋白质的配方化学以及深入了解单晶生长现象具有潜在的实际应用价值。