Li Yehua, Guolo Annamaria, Hoffman F Owen, Carroll Raymond J
Department of Statistics, University of Georgia, Athens, Georgia 30605, USA.
Biometrics. 2007 Dec;63(4):1226-36. doi: 10.1111/j.1541-0420.2007.00810.x.
In radiation epidemiology, it is often necessary to use mathematical models in the absence of direct measurements of individual doses. When complex models are used as surrogates for direct measurements to estimate individual doses that occurred almost 50 years ago, dose estimates will be associated with considerable error, this error being a mixture of (a) classical measurement error due to individual data such as diet histories and (b) Berkson measurement error associated with various aspects of the dosimetry system. In the Nevada Test Site(NTS) Thyroid Disease Study, the Berkson measurement errors are correlated within strata. This article concerns the development of statistical methods for inference about risk of radiation dose on thyroid disease, methods that account for the complex error structure inherence in the problem. Bayesian methods using Markov chain Monte Carlo and Monte-Carlo expectation-maximization methods are described, with both sharing a key Metropolis-Hastings step. Regression calibration is also considered, but we show that regression calibration does not use the correlation structure of the Berkson errors. Our methods are applied to the NTS Study, where we find a strong dose-response relationship between dose and thyroiditis. We conclude that full consideration of mixtures of Berkson and classical uncertainties in reconstructed individual doses are important for quantifying the dose response and its credibility/confidence interval. Using regression calibration and expectation values for individual doses can lead to a substantial underestimation of the excess relative risk per gray and its 95% confidence intervals.
在辐射流行病学中,在无法直接测量个体剂量的情况下,常常需要使用数学模型。当使用复杂模型替代直接测量来估计近50年前发生的个体剂量时,剂量估计将伴随着相当大的误差,这种误差是(a)由于个体数据(如饮食史)导致的经典测量误差与(b)与剂量测定系统各方面相关的伯克森测量误差的混合。在内华达试验场(NTS)甲状腺疾病研究中,伯克森测量误差在各层内具有相关性。本文关注用于推断辐射剂量对甲状腺疾病风险的统计方法的开发,这些方法考虑了该问题中固有的复杂误差结构。描述了使用马尔可夫链蒙特卡罗方法和蒙特卡罗期望最大化方法的贝叶斯方法,两者都共享一个关键的梅特罗波利斯-黑斯廷斯步骤。还考虑了回归校准,但我们表明回归校准没有利用伯克森误差的相关结构。我们的方法应用于NTS研究,在该研究中我们发现剂量与甲状腺炎之间存在很强的剂量反应关系。我们得出结论,在重建个体剂量时充分考虑伯克森不确定性和经典不确定性的混合对于量化剂量反应及其可信度/置信区间很重要。使用回归校准和个体剂量的期望值可能会导致每格雷超额相对风险及其95%置信区间的大幅低估。