Suppr超能文献

垂体基因表达的高分辨率时间进程分析

High-resolution time course analysis of gene expression from pituitary.

作者信息

Hughes M, Deharo L, Pulivarthy S R, Gu J, Hayes K, Panda S, Hogenesch J B

机构信息

Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

出版信息

Cold Spring Harb Symp Quant Biol. 2007;72:381-6. doi: 10.1101/sqb.2007.72.011.

Abstract

In both the suprachiasmatic nucleus (SCN) and peripheral tissues, the circadian oscillator drives rhythmic transcription of downstream target genes. Recently, a number of studies have used DNA microarrays to systematically identify oscillating transcripts in plants, fruit flies, rats, and mice. These studies have identified several dozen to many hundred rhythmically expressed genes by sampling tissues every 4 hours for 1, 2, or more days. To extend this work, we have performed DNA microarray analysis on RNA derived from the mouse pituitary sampled every hour for 2 days. COSOPT and Fisher's G-test were used at a false-discovery rate of less than 5% to identify more than 250 genes in the pituitary that oscillate with a 24-hour period length. We found that increasing the frequency of sampling across the circadian day dramatically increased the statistical power of both COSOPT and Fisher's G-test, resulting in considerably more high-confidence identifications of rhythmic transcripts than previously described. Finally, to extend the utility of these data sets, a Web-based resource has been constructed (at http://wasabi.itmat.upenn.edu/circa/mouse ) that is freely available to the research community.

摘要

在视交叉上核(SCN)和外周组织中,昼夜节律振荡器驱动下游靶基因的节律性转录。最近,许多研究使用DNA微阵列系统地鉴定植物、果蝇、大鼠和小鼠中的振荡转录本。这些研究通过在1、2天或更长时间内每4小时对组织进行一次采样,鉴定出了几十到数百个有节律表达的基因。为了扩展这项工作,我们对从小鼠垂体中提取的RNA进行了DNA微阵列分析,每小时采样一次,共持续2天。使用COSOPT和Fisher G检验,错误发现率低于5%,以鉴定垂体中超过250个以24小时周期振荡的基因。我们发现,在昼夜节律日内增加采样频率显著提高了COSOPT和Fisher G检验的统计功效,从而比之前描述的方法能鉴定出更多高可信度的节律性转录本。最后,为了扩展这些数据集的实用性,构建了一个基于网络的资源库(网址为http://wasabi.itmat.upenn.edu/circa/mouse ),供研究界免费使用。

相似文献

1
High-resolution time course analysis of gene expression from pituitary.
Cold Spring Harb Symp Quant Biol. 2007;72:381-6. doi: 10.1101/sqb.2007.72.011.
2
Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation.
Bioinformatics. 2010 Jun 15;26(12):i168-74. doi: 10.1093/bioinformatics/btq189.
6
Circadian profiling of the transcriptome in NIH/3T3 fibroblasts: comparison with rhythmic gene expression in SCN2.2 cells and the rat SCN.
Physiol Genomics. 2007 May 11;29(3):280-9. doi: 10.1152/physiolgenomics.00199.2006. Epub 2007 Feb 6.
7
A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti.
BMC Genomics. 2014 Dec 17;15(1):1128. doi: 10.1186/1471-2164-15-1128.
8
Analysis of gene regulatory networks in the mammalian circadian rhythm.
PLoS Comput Biol. 2008 Oct;4(10):e1000193. doi: 10.1371/journal.pcbi.1000193. Epub 2008 Oct 10.
9
The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2.
Elife. 2021 Dec 13;10:e69773. doi: 10.7554/eLife.69773.
10
Circadian profiling of the transcriptome in immortalized rat SCN cells.
Physiol Genomics. 2005 May 11;21(3):370-81. doi: 10.1152/physiolgenomics.00224.2004. Epub 2005 Mar 15.

引用本文的文献

1
Identification and correction of time-series transcriptomic anomalies.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf524.
2
Anti-Müllerian hormone signalling sustains circadian homeostasis in zebrafish.
Nat Commun. 2025 May 10;16(1):4359. doi: 10.1038/s41467-025-59528-1.
3
Experimental design and power calculation in omics circadian rhythmicity detection using the cosinor model.
Stat Med. 2023 Aug 15;42(18):3236-3258. doi: 10.1002/sim.9803. Epub 2023 Jun 2.
4
Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data.
Genes (Basel). 2021 Feb 27;12(3):352. doi: 10.3390/genes12030352.
5
Genome-wide circadian regulation: A unique system for computational biology.
Comput Struct Biotechnol J. 2020 Jul 10;18:1914-1924. doi: 10.1016/j.csbj.2020.07.002. eCollection 2020.
7
Circadian (De)regulation in Head and Neck Squamous Cell Carcinoma.
Int J Mol Sci. 2019 May 30;20(11):2662. doi: 10.3390/ijms20112662.
8
Novel transcriptional networks regulated by CLOCK in human neurons.
Genes Dev. 2017 Nov 1;31(21):2121-2135. doi: 10.1101/gad.305813.117. Epub 2017 Dec 1.
9
Guidelines for Genome-Scale Analysis of Biological Rhythms.
J Biol Rhythms. 2017 Oct;32(5):380-393. doi: 10.1177/0748730417728663. Epub 2017 Nov 3.
10
Computational modeling of the cell-autonomous mammalian circadian oscillator.
BMC Syst Biol. 2017 Feb 24;11(Suppl 1):379. doi: 10.1186/s12918-016-0379-8.

本文引用的文献

1
Central and peripheral clocks in cardiovascular and metabolic function.
Ann Med. 2006;38(8):552-9. doi: 10.1080/07853890600995010.
5
Circadian rhythms: mechanisms and therapeutic implications.
Annu Rev Pharmacol Toxicol. 2007;47:593-628. doi: 10.1146/annurev.pharmtox.47.120505.105208.
6
Properties, entrainment, and physiological functions of mammalian peripheral oscillators.
J Biol Rhythms. 2006 Dec;21(6):494-506. doi: 10.1177/0748730406293889.
7
Molecular components of the mammalian circadian clock.
Hum Mol Genet. 2006 Oct 15;15 Spec No 2:R271-7. doi: 10.1093/hmg/ddl207.
8
Clinical aspects of human circadian rhythms.
J Biol Rhythms. 2005 Aug;20(4):375-86. doi: 10.1177/0748730405278353.
9
Circadian clock genes as modulators of sensitivity to genotoxic stress.
Cell Cycle. 2005 Jul;4(7):901-7. doi: 10.4161/cc.4.7.1792. Epub 2005 Jul 26.
10
Circadian clocks are seeing the systems biology light.
Genome Biol. 2005;6(5):219. doi: 10.1186/gb-2005-6-5-219. Epub 2005 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验