Carvalho Ana Luísa, Dias Fernando M V, Nagy Tibor, Prates José A M, Proctor Mark R, Smith Nicola, Bayer Edward A, Davies Gideon J, Ferreira Luís M A, Romão Maria J, Fontes Carlos M G A, Gilbert Harry J
Rede de Química e Tecnologia/Centro de Química Fina e Biotecnologia (REQUIMTE/CQFB), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3089-94. doi: 10.1073/pnas.0611173104. Epub 2007 Feb 20.
The assembly of proteins that display complementary activities into macromolecular complexes is critical to cellular function. One such enzyme complex, of environmental significance, is the plant cell wall degrading apparatus of anaerobic bacteria, termed the cellulosome. The complex assembles through the interaction of enzyme-derived "type I dockerin" modules with the multiple "cohesin" modules of the scaffolding protein. Clostridium thermocellum type I dockerin modules contain a duplicated 22-residue sequence that comprises helix-1 and helix-3, respectively. The crystal structure of a C. thermocellum type I cohesin-dockerin complex showed that cohesin recognition was predominantly through helix-3 of the dockerin. The sequence duplication is reflected in near-perfect 2-fold structural symmetry, suggesting that both repeats could interact with cohesins by a common mechanism in wild-type (WT) proteins. Here, a helix-3 disrupted mutant dockerin is used to visualize the reverse binding in which the dockerin mutant is indeed rotated 180 degrees relative to the WT dockerin such that helix-1 now dominates recognition of its protein partner. The dual binding mode is predicted to impart significant plasticity into the orientation of the catalytic subunits within this supramolecular assembly, which reflects the challenges presented by the degradation of a heterogeneous, recalcitrant, insoluble substrate by a tethered macromolecular complex.
将具有互补活性的蛋白质组装成大分子复合物对细胞功能至关重要。一种具有环境意义的酶复合物是厌氧细菌的植物细胞壁降解装置,称为纤维小体。该复合物通过酶衍生的“Ⅰ型锚定蛋白”模块与支架蛋白的多个“粘着蛋白”模块相互作用而组装。嗜热栖热菌Ⅰ型锚定蛋白模块包含一个重复的22个残基序列,分别构成螺旋-1和螺旋-3。嗜热栖热菌Ⅰ型粘着蛋白-锚定蛋白复合物的晶体结构表明,粘着蛋白的识别主要通过锚定蛋白的螺旋-3。序列重复反映在近乎完美的2倍结构对称性上,这表明在野生型(WT)蛋白中,两个重复序列可能通过共同机制与粘着蛋白相互作用。在此,使用一种螺旋-3破坏的突变型锚定蛋白来观察反向结合,其中该锚定蛋白突变体相对于WT锚定蛋白确实旋转了180度,使得螺旋-1现在主导了其蛋白质伴侣的识别。这种双重结合模式预计会给该超分子组装体中催化亚基的取向带来显著的可塑性,这反映了由一个拴系的大分子复合物降解异质、顽固、不溶性底物所带来的挑战。