Auchincloss Amy H, Diez Roux Ana V
Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA.
Am J Epidemiol. 2008 Jul 1;168(1):1-8. doi: 10.1093/aje/kwn118. Epub 2008 May 13.
A major focus of recent work on the spatial patterning of health has been the study of how features of residential environments or neighborhoods may affect health. Place effects on health emerge from complex interdependent processes in which individuals interact with each other and their environment and in which both individuals and environments adapt and change over time. Traditional epidemiologic study designs and statistical regression approaches are unable to examine these dynamic processes. These limitations have constrained the types of questions asked, the answers received, and the hypotheses and theoretical explanations that are developed. Agent-based models and other systems-dynamics models may help to address some of these challenges. Agent-based models are computer representations of systems consisting of heterogeneous microentities that can interact and change/adapt over time in response to other agents and features of the environment. Using these models, one can observe how macroscale dynamics emerge from microscale interactions and adaptations. A number of challenges and limitations exist for agent-based modeling. Nevertheless, use of these dynamic models may complement traditional epidemiologic analyses and yield additional insights into the processes involved and the interventions that may be most useful.
近期关于健康空间模式的研究主要集中在探讨居住环境或社区的特征如何影响健康。健康的场所效应源于复杂的相互依存过程,在这些过程中,个体相互之间以及与环境进行互动,并且个体和环境都会随着时间的推移而适应和变化。传统的流行病学研究设计和统计回归方法无法检验这些动态过程。这些局限性限制了所提出的问题类型、所得到的答案,以及所形成的假设和理论解释。基于主体的模型和其他系统动力学模型可能有助于应对其中一些挑战。基于主体的模型是由异质微观实体组成的系统的计算机表示,这些微观实体可以随着时间的推移相互作用,并响应其他主体和环境特征而变化/适应。使用这些模型,可以观察宏观动态是如何从微观层面的相互作用和适应中产生的。基于主体的建模存在一些挑战和局限性。尽管如此,使用这些动态模型可能会补充传统的流行病学分析,并对所涉及的过程以及可能最有用的干预措施产生更多的见解。