Suppr超能文献

失访对药物滥用临床试验中几种统计方法治疗效果假设检验的影响。

The impact of loss to follow-up on hypothesis tests of the treatment effect for several statistical methods in substance abuse clinical trials.

作者信息

Hedden Sarra L, Woolson Robert F, Carter Rickey E, Palesch Yuko, Upadhyaya Himanshu P, Malcolm Robert J

机构信息

Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC 29425, USA.

出版信息

J Subst Abuse Treat. 2009 Jul;37(1):54-63. doi: 10.1016/j.jsat.2008.09.011. Epub 2008 Nov 13.

Abstract

"Loss to follow-up" can be substantial in substance abuse clinical trials. When extensive losses to follow-up occur, one must cautiously analyze and interpret the findings of a research study. Aims of this project were to introduce the types of missing data mechanisms and describe several methods for analyzing data with loss to follow-up. Furthermore, a simulation study compared Type I error and power of several methods when missing data amount and mechanism varies. Methods compared were the following: Last observation carried forward (LOCF), multiple imputation (MI), modified stratified summary statistics (SSS), and mixed effects models. Results demonstrated nominal Type I error for all methods; power was high for all methods except LOCF. Mixed effect model, modified SSS, and MI are generally recommended for use; however, many methods require that the data are missing at random or missing completely at random (i.e., "ignorable"). If the missing data are presumed to be nonignorable, a sensitivity analysis is recommended.

摘要

在药物滥用临床试验中,“失访”情况可能相当严重。当出现大量失访情况时,必须谨慎分析和解读研究结果。本项目的目的是介绍缺失数据机制的类型,并描述几种用于分析存在失访情况的数据的方法。此外,一项模拟研究比较了在缺失数据量和机制不同时,几种方法的I型错误率和检验效能。所比较的方法如下:末次观察值结转(LOCF)、多重填补(MI)、修正分层汇总统计量(SSS)和混合效应模型。结果表明,所有方法的I型错误率均为名义水平;除LOCF外,所有方法的检验效能都很高。一般建议使用混合效应模型、修正SSS和MI;然而,许多方法要求数据是随机缺失或完全随机缺失(即“可忽略”)。如果假定缺失数据是不可忽略的,则建议进行敏感性分析。

相似文献

引用本文的文献

6
Historical Benchmarks for Quality Tolerance Limits Parameters in Clinical Trials.临床试验中质量公差限参数的历史基准。
Ther Innov Regul Sci. 2021 Nov;55(6):1265-1273. doi: 10.1007/s43441-021-00335-3. Epub 2021 Aug 27.

本文引用的文献

6
Analyzing incomplete longitudinal clinical trial data.分析不完整的纵向临床试验数据。
Biostatistics. 2004 Jul;5(3):445-64. doi: 10.1093/biostatistics/5.3.445.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验