Suppr超能文献

失访对药物滥用临床试验中几种统计方法治疗效果假设检验的影响。

The impact of loss to follow-up on hypothesis tests of the treatment effect for several statistical methods in substance abuse clinical trials.

作者信息

Hedden Sarra L, Woolson Robert F, Carter Rickey E, Palesch Yuko, Upadhyaya Himanshu P, Malcolm Robert J

机构信息

Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC 29425, USA.

出版信息

J Subst Abuse Treat. 2009 Jul;37(1):54-63. doi: 10.1016/j.jsat.2008.09.011. Epub 2008 Nov 13.

Abstract

"Loss to follow-up" can be substantial in substance abuse clinical trials. When extensive losses to follow-up occur, one must cautiously analyze and interpret the findings of a research study. Aims of this project were to introduce the types of missing data mechanisms and describe several methods for analyzing data with loss to follow-up. Furthermore, a simulation study compared Type I error and power of several methods when missing data amount and mechanism varies. Methods compared were the following: Last observation carried forward (LOCF), multiple imputation (MI), modified stratified summary statistics (SSS), and mixed effects models. Results demonstrated nominal Type I error for all methods; power was high for all methods except LOCF. Mixed effect model, modified SSS, and MI are generally recommended for use; however, many methods require that the data are missing at random or missing completely at random (i.e., "ignorable"). If the missing data are presumed to be nonignorable, a sensitivity analysis is recommended.

摘要

在药物滥用临床试验中,“失访”情况可能相当严重。当出现大量失访情况时,必须谨慎分析和解读研究结果。本项目的目的是介绍缺失数据机制的类型,并描述几种用于分析存在失访情况的数据的方法。此外,一项模拟研究比较了在缺失数据量和机制不同时,几种方法的I型错误率和检验效能。所比较的方法如下:末次观察值结转(LOCF)、多重填补(MI)、修正分层汇总统计量(SSS)和混合效应模型。结果表明,所有方法的I型错误率均为名义水平;除LOCF外,所有方法的检验效能都很高。一般建议使用混合效应模型、修正SSS和MI;然而,许多方法要求数据是随机缺失或完全随机缺失(即“可忽略”)。如果假定缺失数据是不可忽略的,则建议进行敏感性分析。

相似文献

2
MMRM versus MI in dealing with missing data--a comparison based on 25 NDA data sets.
J Biopharm Stat. 2011 May;21(3):423-36. doi: 10.1080/10543401003777995.
4
MMRM vs. LOCF: a comprehensive comparison based on simulation study and 25 NDA datasets.
J Biopharm Stat. 2009;19(2):227-46. doi: 10.1080/10543400802609797.
5
Comparisons of methods for analysis of repeated binary responses with missing data.
J Biopharm Stat. 2011 May;21(3):371-92. doi: 10.1080/10543401003687129.
6
An overview of practical approaches for handling missing data in clinical trials.
J Biopharm Stat. 2009 Nov;19(6):1055-73. doi: 10.1080/10543400903242795.
7
Modern statistical methods for handling missing repeated measurements in obesity trial data: beyond LOCF.
Obes Rev. 2003 Aug;4(3):175-84. doi: 10.1046/j.1467-789x.2003.00109.x.
8
A bias correction in testing treatment efficacy under informative dropout in clinical trials.
J Biopharm Stat. 2009 Nov;19(6):980-1000. doi: 10.1080/10543400903242753.
9
Missing radiographic data handling in randomized clinical trials in rheumatoid arthritis.
J Biopharm Stat. 2013;23(6):1435-52. doi: 10.1080/10543406.2013.834913.
10
Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation.
Biometrics. 2004 Sep;60(3):820-8. doi: 10.1111/j.0006-341X.2004.00234.x.

引用本文的文献

6
Historical Benchmarks for Quality Tolerance Limits Parameters in Clinical Trials.
Ther Innov Regul Sci. 2021 Nov;55(6):1265-1273. doi: 10.1007/s43441-021-00335-3. Epub 2021 Aug 27.
8
Long-term outcomes of patients who rate symptoms of rheumatoid arthritis as 'satisfactory'.
Rheumatology (Oxford). 2020 Aug 1;59(8):1853-1861. doi: 10.1093/rheumatology/kez497.
10
Understanding and Preventing Loss to Follow-up: Experiences From the Spinal Cord Injury Model Systems.
Top Spinal Cord Inj Rehabil. 2018 Spring;24(2):97-109. doi: 10.1310/sci2402-97.

本文引用的文献

1
Multiple Imputation for Multivariate Missing-Data Problems: A Data Analyst's Perspective.
Multivariate Behav Res. 1998 Oct 1;33(4):545-71. doi: 10.1207/s15327906mbr3304_5.
3
A meta-analytic review of psychosocial interventions for substance use disorders.
Am J Psychiatry. 2008 Feb;165(2):179-87. doi: 10.1176/appi.ajp.2007.06111851. Epub 2008 Jan 15.
4
Characteristics of cocaine- and marijuana-dependent subjects presenting for medication treatment trials.
Addict Behav. 2007 Jul;32(7):1433-40. doi: 10.1016/j.addbeh.2006.10.007. Epub 2006 Dec 5.
5
A controlled trial of amlodipine for cocaine dependence: a negative report.
J Subst Abuse Treat. 2005 Mar;28(2):197-204. doi: 10.1016/j.jsat.2004.12.006.
6
Analyzing incomplete longitudinal clinical trial data.
Biostatistics. 2004 Jul;5(3):445-64. doi: 10.1093/biostatistics/5.3.445.
7
Intention-to-treat meets missing data: implications of alternate strategies for analyzing clinical trials data.
Drug Alcohol Depend. 2002 Oct 1;68(2):121-30. doi: 10.1016/s0376-8716(02)00111-4.
8
Recent advances in the dissemination of contingency management techniques: clinical and research perspectives.
J Subst Abuse Treat. 2002 Sep;23(2):81-6. doi: 10.1016/s0740-5472(02)00251-9.
9
Missing data: our view of the state of the art.
Psychol Methods. 2002 Jun;7(2):147-77.
10
Multivariate modeling of missing data within and across assessment waves.
Addiction. 2000 Nov;95 Suppl 3:S361-80. doi: 10.1080/09652140020004287.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验