Suppr超能文献

功能磁共振成像数据的多变量格兰杰因果关系分析。

Multivariate Granger causality analysis of fMRI data.

作者信息

Deshpande Gopikrishna, LaConte Stephan, James George Andrew, Peltier Scott, Hu Xiaoping

机构信息

WHC Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30322, USA.

出版信息

Hum Brain Mapp. 2009 Apr;30(4):1361-73. doi: 10.1002/hbm.20606.

Abstract

This article describes the combination of multivariate Granger causality analysis, temporal down-sampling of fMRI time series, and graph theoretic concepts for investigating causal brain networks and their dynamics. As a demonstration, this approach was applied to analyze epoch-to-epoch changes in a hand-gripping, muscle fatigue experiment. Causal influences between the activated regions were analyzed by applying the directed transfer function (DTF) analysis of multivariate Granger causality with the integrated epoch response as the input, allowing us to account for the effects of several relevant regions simultaneously. Integrated responses were used in lieu of originally sampled time points to remove the effect of the spatially varying hemodynamic response as a confounding factor; using integrated responses did not affect our ability to capture its slowly varying affects of fatigue. We separately modeled the early, middle, and late periods in the fatigue. We adopted graph theoretic concepts of clustering and eccentricity to facilitate the interpretation of the resultant complex networks. Our results reveal the temporal evolution of the network and demonstrate that motor fatigue leads to a disconnection in the related neural network.

摘要

本文描述了多元格兰杰因果分析、功能磁共振成像(fMRI)时间序列的时间下采样以及用于研究因果脑网络及其动力学的图论概念的结合。作为演示,该方法被应用于分析一项手部抓握肌肉疲劳实验中逐时段的变化。通过将多元格兰杰因果的定向传递函数(DTF)分析应用于以整合时段响应作为输入,来分析激活区域之间的因果影响,这使我们能够同时考虑几个相关区域的影响。使用整合响应代替原始采样时间点,以消除空间变化的血液动力学响应作为混杂因素的影响;使用整合响应并不影响我们捕捉其缓慢变化的疲劳影响的能力。我们分别对疲劳的早期、中期和晚期进行建模。我们采用聚类和偏心率的图论概念来促进对所得复杂网络的解释。我们的结果揭示了网络的时间演变,并表明运动疲劳会导致相关神经网络的断开连接。

相似文献

1
Multivariate Granger causality analysis of fMRI data.
Hum Brain Mapp. 2009 Apr;30(4):1361-73. doi: 10.1002/hbm.20606.
2
Joint EEG/fMRI state space model for the detection of directed interactions in human brains--a simulation study.
Physiol Meas. 2011 Nov;32(11):1725-36. doi: 10.1088/0967-3334/32/11/S01. Epub 2011 Oct 25.
3
Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
Neuroimage. 2010 Oct 1;52(4):1444-55. doi: 10.1016/j.neuroimage.2010.05.022. Epub 2010 Jun 1.
4
GMAC: a Matlab toolbox for spectral Granger causality analysis of fMRI data.
Comput Biol Med. 2012 Oct;42(10):943-56. doi: 10.1016/j.compbiomed.2012.07.003. Epub 2012 Aug 25.
7
Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.
PLoS Comput Biol. 2012;8(5):e1002513. doi: 10.1371/journal.pcbi.1002513. Epub 2012 May 24.
8
Brain network for passive word listening as evaluated with ICA and Granger causality.
Brain Res Bull. 2007 May 30;72(4-6):284-92. doi: 10.1016/j.brainresbull.2007.01.008. Epub 2007 Jan 30.
9
Pattern-based Granger causality mapping in FMRI.
Brain Connect. 2013;3(6):569-77. doi: 10.1089/brain.2013.0148. Epub 2013 Oct 23.
10
A comparison of Granger causality and coherency in fMRI-based analysis of the motor system.
Hum Brain Mapp. 2009 Nov;30(11):3475-94. doi: 10.1002/hbm.20771.

引用本文的文献

2
An information-theoretic framework for conditional causality analysis of brain networks.
Netw Neurosci. 2024 Oct 1;8(3):989-1008. doi: 10.1162/netn_a_00386. eCollection 2024.
3
A predictor-informed multi-subject bayesian approach for dynamic functional connectivity.
PLoS One. 2024 May 16;19(5):e0298651. doi: 10.1371/journal.pone.0298651. eCollection 2024.
4
Causal functional connectivity in Alzheimer's disease computed from time series fMRI data.
Front Comput Neurosci. 2023 Dec 19;17:1251301. doi: 10.3389/fncom.2023.1251301. eCollection 2023.
8
Bottom-up vs. top-down connectivity imbalance in individuals with high-autistic traits: An electroencephalographic study.
Front Syst Neurosci. 2022 Aug 12;16:932128. doi: 10.3389/fnsys.2022.932128. eCollection 2022.
9
Model-based stationarity filtering of long-term memory data applied to resting-state blood-oxygen-level-dependent signal.
PLoS One. 2022 Jul 27;17(7):e0268752. doi: 10.1371/journal.pone.0268752. eCollection 2022.
10
NLGC: Network localized Granger causality with application to MEG directional functional connectivity analysis.
Neuroimage. 2022 Oct 15;260:119496. doi: 10.1016/j.neuroimage.2022.119496. Epub 2022 Jul 21.

本文引用的文献

1
Timing functions of the cerebellum.
J Cogn Neurosci. 1989 Spring;1(2):136-52. doi: 10.1162/jocn.1989.1.2.136.
2
Directed transfer function analysis of fMRI data to investigate network dynamics.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:671-4. doi: 10.1109/IEMBS.2006.259969.
3
Brain connectivity structure in spinal cord injured: evaluation by graph analysis.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:988-91. doi: 10.1109/IEMBS.2006.260592.
4
Time-significant wavelet coherence for the evaluation of schizophrenic brain activity using a graph theory approach.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4265-8. doi: 10.1109/IEMBS.2006.260680.
5
Pharmacological FMRI in the development of new analgesic compounds.
NMR Biomed. 2006 Oct;19(6):702-11. doi: 10.1002/nbm.1076.
6
Breaking down the barriers: fMRI applications in pain, analgesia and analgesics.
Mol Pain. 2006 Sep 18;2:30. doi: 10.1186/1744-8069-2-30.
8
Investigating directed influences between activated brain areas in a motor-response task using fMRI.
Magn Reson Imaging. 2006 Feb;24(2):181-5. doi: 10.1016/j.mri.2005.10.022. Epub 2005 Dec 27.
9
Reductions in interhemispheric motor cortex functional connectivity after muscle fatigue.
Brain Res. 2005 Sep 28;1057(1-2):10-6. doi: 10.1016/j.brainres.2005.06.078.
10
Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data.
J Neurosci Methods. 2006 Jan 30;150(2):228-37. doi: 10.1016/j.jneumeth.2005.06.011. Epub 2005 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验