Brown Scott D, Ratcliff Roger, Smith Philip L
Department of Cognitive Science, University of California Irvine, CA 92697-5100, USA.
J Math Psychol. 2006 Aug;50(4):402-410. doi: 10.1016/j.jmp.2006.03.004.
Models of decision making and response time (RT) are often formulated using stochastic differential equations (SDEs). Researchers often investigate these models using a simple Monte Carlo method based on Euler's method for solving ordinary differential equations. The accuracy of Euler's method is investigated and compared to the performance of more complex simulation methods. The more complex methods for solving SDEs yielded no improvement in accuracy over the Euler method. However, the matrix method proposed by Diederich and Busemeyer (2003) yielded significant improvements. The accuracy of all methods depended critically on the size of the approximating time step. The large (∼10 ms) step sizes often used by psychological researchers resulted in large and systematic errors in evaluating RT distributions.
决策模型和反应时间(RT)通常使用随机微分方程(SDEs)来构建。研究人员经常使用基于欧拉方法求解常微分方程的简单蒙特卡罗方法来研究这些模型。研究了欧拉方法的准确性,并将其与更复杂模拟方法的性能进行了比较。求解SDEs的更复杂方法在准确性上并没有比欧拉方法有提高。然而,迪德里希和布西迈尔(2003年)提出的矩阵方法有显著改进。所有方法的准确性都严重依赖于近似时间步长的大小。心理学研究人员经常使用的大(约10毫秒)步长在评估RT分布时会导致大的系统性误差。