Suppr超能文献

评估随机微分方程近似方法。

Evaluating methods for approximating stochastic differential equations.

作者信息

Brown Scott D, Ratcliff Roger, Smith Philip L

机构信息

Department of Cognitive Science, University of California Irvine, CA 92697-5100, USA.

出版信息

J Math Psychol. 2006 Aug;50(4):402-410. doi: 10.1016/j.jmp.2006.03.004.

Abstract

Models of decision making and response time (RT) are often formulated using stochastic differential equations (SDEs). Researchers often investigate these models using a simple Monte Carlo method based on Euler's method for solving ordinary differential equations. The accuracy of Euler's method is investigated and compared to the performance of more complex simulation methods. The more complex methods for solving SDEs yielded no improvement in accuracy over the Euler method. However, the matrix method proposed by Diederich and Busemeyer (2003) yielded significant improvements. The accuracy of all methods depended critically on the size of the approximating time step. The large (∼10 ms) step sizes often used by psychological researchers resulted in large and systematic errors in evaluating RT distributions.

摘要

决策模型和反应时间(RT)通常使用随机微分方程(SDEs)来构建。研究人员经常使用基于欧拉方法求解常微分方程的简单蒙特卡罗方法来研究这些模型。研究了欧拉方法的准确性,并将其与更复杂模拟方法的性能进行了比较。求解SDEs的更复杂方法在准确性上并没有比欧拉方法有提高。然而,迪德里希和布西迈尔(2003年)提出的矩阵方法有显著改进。所有方法的准确性都严重依赖于近似时间步长的大小。心理学研究人员经常使用的大(约10毫秒)步长在评估RT分布时会导致大的系统性误差。

相似文献

1
Evaluating methods for approximating stochastic differential equations.
J Math Psychol. 2006 Aug;50(4):402-410. doi: 10.1016/j.jmp.2006.03.004.
2
The most precise computations using Euler's method in standard floating-point arithmetic applied to modelling of biological systems.
Comput Methods Programs Biomed. 2013 Aug;111(2):471-9. doi: 10.1016/j.cmpb.2013.04.001. Epub 2013 May 16.
4
Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.
Comput Methods Programs Biomed. 2009 Jun;94(3):279-89. doi: 10.1016/j.cmpb.2009.02.001. Epub 2009 Mar 5.
5
Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.
Proc Math Phys Eng Sci. 2015 Apr 8;471(2176):20140679. doi: 10.1098/rspa.2014.0679.
7
Uniformization method for solving cardiac electrophysiology models based on the Markov-chain formulation.
IEEE Trans Biomed Eng. 2015 Feb;62(2):600-8. doi: 10.1109/TBME.2014.2361325. Epub 2014 Oct 3.
8
A thermodynamic inspired AI based search algorithm for solving ordinary differential equations.
Sci Rep. 2025 May 25;15(1):18141. doi: 10.1038/s41598-025-03093-6.
9
A higher-order numerical framework for stochastic simulation of chemical reaction systems.
BMC Syst Biol. 2012 Jul 15;6:85. doi: 10.1186/1752-0509-6-85.
10
Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.
Math Biosci Eng. 2014 Jun;11(3):403-25. doi: 10.3934/mbe.2014.11.403.

引用本文的文献

1
Probing the origins of subjective confidence in source memory decisions in young and older adults: A sequential sampling account.
J Exp Psychol Gen. 2025 Mar;154(3):799-828. doi: 10.1037/xge0001680. Epub 2024 Dec 12.
2
A tutorial on fitting joint models of M/EEG and behavior to understand cognition.
Behav Res Methods. 2024 Sep;56(6):6020-6050. doi: 10.3758/s13428-023-02331-x. Epub 2024 Feb 26.
3
Expressions for Bayesian confidence of drift diffusion observers in fluctuating stimuli tasks.
J Math Psychol. 2023 Dec;117:102815. doi: 10.1016/j.jmp.2023.102815.
4
"Reliable organisms from unreliable components" revisited: the linear drift, linear infinitesimal variance model of decision making.
Psychon Bull Rev. 2023 Aug;30(4):1323-1359. doi: 10.3758/s13423-022-02237-3. Epub 2023 Jan 31.
5
Modeling evidence accumulation decision processes using integral equations: Urgency-gating and collapsing boundaries.
Psychol Rev. 2022 Mar;129(2):235-267. doi: 10.1037/rev0000301. Epub 2021 Aug 19.
7
The dynamics of intonation: Categorical and continuous variation in an attractor-based model.
PLoS One. 2019 May 23;14(5):e0216859. doi: 10.1371/journal.pone.0216859. eCollection 2019.
8
Does response modality influence conflict? Modelling vocal and manual response Stroop interference.
J Exp Psychol Learn Mem Cogn. 2019 Nov;45(11):2098-2119. doi: 10.1037/xlm0000689. Epub 2019 Feb 25.
9
Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior.
Front Hum Neurosci. 2018 Mar 26;12:106. doi: 10.3389/fnhum.2018.00106. eCollection 2018.
10
On the Neural and Mechanistic Bases of Self-Control.
Cereb Cortex. 2019 Feb 1;29(2):732-750. doi: 10.1093/cercor/bhx355.

本文引用的文献

1
A ballistic model of choice response time.
Psychol Rev. 2005 Jan;112(1):117-28. doi: 10.1037/0033-295X.112.1.117.
2
A comparison of sequential sampling models for two-choice reaction time.
Psychol Rev. 2004 Apr;111(2):333-67. doi: 10.1037/0033-295X.111.2.333.
3
The neurobiology of visual-saccadic decision making.
Annu Rev Neurosci. 2003;26:133-79. doi: 10.1146/annurev.neuro.26.010302.081134.
4
Effects of stimulus-response compatibility on neural selection in frontal eye field.
Neuron. 2003 May 22;38(4):637-48. doi: 10.1016/s0896-6273(03)00237-x.
5
A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions.
J Neurophysiol. 2003 Sep;90(3):1392-407. doi: 10.1152/jn.01049.2002. Epub 2003 May 21.
6
Probabilistic decision making by slow reverberation in cortical circuits.
Neuron. 2002 Dec 5;36(5):955-68. doi: 10.1016/s0896-6273(02)01092-9.
7
Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task.
J Neurosci. 2002 Nov 1;22(21):9475-89. doi: 10.1523/JNEUROSCI.22-21-09475.2002.
9
A comparison of four methods for simulating the diffusion process.
Behav Res Methods Instrum Comput. 2001 Nov;33(4):443-56. doi: 10.3758/bf03195402.
10
The time course of perceptual choice: the leaky, competing accumulator model.
Psychol Rev. 2001 Jul;108(3):550-92. doi: 10.1037/0033-295x.108.3.550.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验