Suppr超能文献

侧向循环张力下黏附簇的稳定性和细胞重定向

Stability of adhesion clusters and cell reorientation under lateral cyclic tension.

作者信息

Kong Dong, Ji Baohua, Dai Lanhong

机构信息

State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.

出版信息

Biophys J. 2008 Oct;95(8):4034-44. doi: 10.1529/biophysj.108.131342. Epub 2008 Jul 11.

Abstract

This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.

摘要

这项工作是由实验观察结果推动的,即在拉伸基质上的细胞对静态和动态载荷表现出不同的反应。通过将粘着斑视为一个粘附簇,在分子水平上建立了一个能够考虑应力纤维、粘附键和基质力学的粘着斑模型。通过在基质上施加循环外部应变,研究了动态载荷下簇的稳定性。我们表明,存在一个外部应变幅度的阈值,超过该阈值,粘附簇会迅速破坏。此外,我们的结果表明,粘附簇在高频加载下容易失去稳定性,因为由于基质的高速变形,受体和配体无法获得足够的接触时间来形成键。同时,粘弹性应力纤维在高频下变得刚性,这导致键的显著变形。此外,我们发现应力纤维的刚度和松弛时间在粘附簇的稳定性中起着重要作用。这项工作的本质是通过应力纤维的力学将粘附键的动力学(分子水平)与细胞重新定向过程中的行为(细胞水平)联系起来。簇模型的预测与实验观察结果一致。

相似文献

1
Stability of adhesion clusters and cell reorientation under lateral cyclic tension.
Biophys J. 2008 Oct;95(8):4034-44. doi: 10.1529/biophysj.108.131342. Epub 2008 Jul 11.
2
A computational study of stress fiber-focal adhesion dynamics governing cell contractility.
Biophys J. 2014 May 6;106(9):1890-901. doi: 10.1016/j.bpj.2014.03.027.
3
Dynamics of Cellular Reorientation on a Substrate under Biaxial Cyclic Stretches.
Nano Lett. 2015 Aug 12;15(8):5525-9. doi: 10.1021/acs.nanolett.5b02095. Epub 2015 Jul 7.
4
Cyclic stretch induces cell reorientation on substrates by destabilizing catch bonds in focal adhesions.
PLoS One. 2012;7(11):e48346. doi: 10.1371/journal.pone.0048346. Epub 2012 Nov 12.
5
A mechanochemical model of cell reorientation on substrates under cyclic stretch.
PLoS One. 2013 Jun 6;8(6):e65864. doi: 10.1371/journal.pone.0065864. Print 2013.
6
Flow-induced focal adhesion remodeling mediated by local cytoskeletal stresses and reorganization.
Cell Adh Migr. 2015;9(6):432-40. doi: 10.1080/19336918.2015.1089379.
7
Evolving roles and dynamics for catch and slip bonds during adhesion cluster maturation.
Phys Rev E. 2021 Mar;103(3-1):032402. doi: 10.1103/PhysRevE.103.032402.
8
Fascin plays a role in stress fiber organization and focal adhesion disassembly.
Curr Biol. 2014 Jul 7;24(13):1492-9. doi: 10.1016/j.cub.2014.05.023. Epub 2014 Jun 12.
9
Mechanical principle of enhancing cell-substrate adhesion via pre-tension in the cytoskeleton.
Biophys J. 2010 May 19;98(10):2154-62. doi: 10.1016/j.bpj.2010.02.007.
10
CaMKK2 Regulates Mechanosensitive Assembly of Contractile Actin Stress Fibers.
Cell Rep. 2018 Jul 3;24(1):11-19. doi: 10.1016/j.celrep.2018.06.011.

引用本文的文献

1
The effect of cyclic stretch on aortic viscoelasticity and the putative role of smooth muscle focal adhesion.
Front Physiol. 2023 Aug 11;14:1218924. doi: 10.3389/fphys.2023.1218924. eCollection 2023.
2
Receptor-Ligand Binding: Effect of Mechanical Factors.
Int J Mol Sci. 2023 May 21;24(10):9062. doi: 10.3390/ijms24109062.
3
The influence of nanotopography on cell behaviour through interactions with the extracellular matrix - A review.
Bioact Mater. 2021 Dec 21;15:145-159. doi: 10.1016/j.bioactmat.2021.11.024. eCollection 2022 Sep.
4
Cellular mechanics of wound formation in single cell layer under cyclic stretching.
Biophys J. 2022 Jan 18;121(2):288-299. doi: 10.1016/j.bpj.2021.12.015. Epub 2021 Dec 11.
6
A theoretical model of collective cell polarization and alignment.
J Mech Phys Solids. 2020 Apr;137. doi: 10.1016/j.jmps.2019.103860. Epub 2019 Dec 30.
9
Switching behaviour in vascular smooth muscle cell-matrix adhesion during oscillatory loading.
J Theor Biol. 2020 Oct 7;502:110387. doi: 10.1016/j.jtbi.2020.110387. Epub 2020 Jun 27.
10
Good advice for endothelial cells: Get in line, relax tension, and go with the flow.
APL Bioeng. 2020 Feb 26;4(1):010905. doi: 10.1063/1.5129812. eCollection 2020 Mar.

本文引用的文献

1
Do cells sense stress or strain? Measurement of cellular orientation can provide a clue.
Biophys J. 2008 Mar 1;94(5):L29-31. doi: 10.1529/biophysj.107.126060. Epub 2008 Jan 11.
2
Memory in receptor-ligand-mediated cell adhesion.
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18037-42. doi: 10.1073/pnas.0704811104. Epub 2007 Nov 8.
3
Forces and bond dynamics in cell adhesion.
Science. 2007 May 25;316(5828):1148-53. doi: 10.1126/science.1137592.
4
Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands.
Biophys J. 2007 Apr 15;92(8):2964-74. doi: 10.1529/biophysj.106.089730. Epub 2007 Feb 2.
5
Dynamic strength of molecularly bonded surfaces.
J Chem Phys. 2006 Nov 21;125(19):194702. doi: 10.1063/1.2372493.
6
Anisotropic mechanosensing by mesenchymal stem cells.
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16095-100. doi: 10.1073/pnas.0604182103. Epub 2006 Oct 23.
7
Limitation of cell adhesion by the elasticity of the extracellular matrix.
Biophys J. 2006 Jul 1;91(1):61-73. doi: 10.1529/biophysj.105.077115. Epub 2006 Mar 31.
8
Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly.
Eur J Cell Biol. 2006 Apr;85(3-4):219-24. doi: 10.1016/j.ejcb.2005.09.011. Epub 2005 Oct 10.
9
Force-induced adsorption and anisotropic growth of focal adhesions.
Biophys J. 2006 May 15;90(10):3469-84. doi: 10.1529/biophysj.105.074377. Epub 2006 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验