Hubbard Alan E, Laan Mark J VAN DER
Division of Biostatistics, University of California, Berkeley, California 94720, U.S.A.
Biometrika. 2008;95(1):35-47. doi: 10.1093/biomet/asm097.
We propose a new causal parameter, which is a natural extension of existing approaches to causal inference such as marginal structural models. Modelling approaches are proposed for the difference between a treatment-specific counterfactual population distribution and the actual population distribution of an outcome in the target population of interest. Relevant parameters describe the effect of a hypothetical intervention on such a population and therefore we refer to these models as population intervention models. We focus on intervention models estimating the effect of an intervention in terms of a difference and ratio of means, called risk difference and relative risk if the outcome is binary. We provide a class of inverse-probability-of-treatment-weighted and doubly-robust estimators of the causal parameters in these models. The finite-sample performance of these new estimators is explored in a simulation study.
我们提出了一种新的因果参数,它是现有因果推断方法(如边际结构模型)的自然扩展。针对感兴趣的目标人群中特定治疗的反事实总体分布与实际总体结局分布之间的差异,提出了建模方法。相关参数描述了假设干预对该总体的影响,因此我们将这些模型称为总体干预模型。我们专注于干预模型,该模型根据均值的差异和比率来估计干预效果,如果结局是二元的,则分别称为风险差异和相对风险。我们提供了这类模型中因果参数的一类治疗权重逆概率估计器和双稳健估计器。在模拟研究中探索了这些新估计器的有限样本性能。