Department of Statistics and Actuarial Science, 8430University of Waterloo, Waterloo, ON, Canada.
Department of Population Medicine, 1811Harvard Medical School, Boston, MA, USA.
Stat Methods Med Res. 2023 Mar;32(3):509-523. doi: 10.1177/09622802221146311. Epub 2023 Jan 4.
The generalized g-formula can be used to estimate the probability of survival under a sustained treatment strategy. When treatment strategies are deterministic, estimators derived from the so-called efficient influence function (EIF) for the g-formula will be doubly robust to model misspecification. In recent years, several practical applications have motivated estimation of the g-formula under non-deterministic treatment strategies where treatment assignment at each time point depends on the observed treatment process. In this case, EIF-based estimators may or may not be doubly robust. In this paper, we provide sufficient conditions to ensure the existence of doubly robust estimators for intervention treatment distributions that depend on the observed treatment process for point treatment interventions and give a class of intervention treatment distributions dependent on the observed treatment process that guarantee model doubly and multiply robust estimators in longitudinal settings. Motivated by an application to pre-exposure prophylaxis (PrEP) initiation studies, we propose a new treatment intervention dependent on the observed treatment process. We show there exist (1) estimators that are doubly and multiply robust to model misspecification and (2) estimators that when used with machine learning algorithms can attain fast convergence rates for our proposed intervention. Finally, we explore the finite sample performance of our estimators via simulation studies.
广义 g 公式可用于估计在持续治疗策略下的生存概率。当治疗策略是确定性的时,从 g 公式的所谓有效影响函数(EIF)导出的估计量对于模型失拟将具有双重稳健性。近年来,一些实际应用激发了在非确定性治疗策略下对 g 公式的估计,其中每个时间点的治疗分配取决于观察到的治疗过程。在这种情况下,基于 EIF 的估计量可能具有双重稳健性,也可能不具有双重稳健性。在本文中,我们提供了充分的条件,以确保对于依赖于观察到的治疗过程的干预治疗分布,存在双重稳健的估计量,对于点治疗干预,并且给出了一类依赖于观察到的治疗过程的干预治疗分布,以保证在纵向设置中模型的双重和多重稳健估计量。受暴露前预防(PrEP)起始研究的应用启发,我们提出了一种新的依赖于观察到的治疗过程的治疗干预措施。我们证明存在(1)对于模型失拟具有双重和多重稳健性的估计量,以及(2)当与机器学习算法一起使用时,我们的建议干预措施的估计量可以实现快速收敛速度。最后,我们通过模拟研究探讨了我们的估计量的有限样本性能。