Suppr超能文献

一种新型的依赖茎环控制元件的UGA通读系统,该系统在果蝇中不涉及翻译性硒代半胱氨酸掺入。

A novel stem loop control element-dependent UGA read-through system without translational selenocysteine incorporation in Drosophila.

作者信息

Hirosawa-Takamori Mitsuko, Ossipov Dmitri, Novoselov Sergey V, Turanov Anton A, Zhang Yan, Gladyshev Vadim N, Krol Alain, Vorbrüggen Gerd, Jäckle Herbert

机构信息

Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fassberg 11, 37077 Göttingen, Germany.

出版信息

FASEB J. 2009 Jan;23(1):107-13. doi: 10.1096/fj.08-116640. Epub 2008 Sep 4.

Abstract

Translational read-through of the UGA stop codon is an evolutionarily conserved feature that most prominently represents the basis of selenoprotein biosynthesis. It requires a specific cis-acting stem loop control element, termed SECIS, which is located in the 3'-untranslated region of eukaryotic selenoprotein mRNAs. In a search for novel factors underlying the SECIS-directed UGA read-through process, we identified an evolutionary conserved GTPase-activating protein, termed GAPsec. We show that the activity of the Drosophila GAPsec (dGAPsec) is necessary to support SECIS-dependent UGA read-through activity in flies and the mouse homolog mGAPsec in mice tissue culture cells. However, selenoprotein biosynthesis is not impaired in flies that lack dGAPsec activity. The results indicate that GAPsec is part of a novel SECIS-dependent translational read-through system that does not involve selenocysteine incorporation.

摘要

UGA终止密码子的翻译通读是一种进化上保守的特征,它最突出地代表了硒蛋白生物合成的基础。它需要一个特定的顺式作用茎环控制元件,称为SECIS,其位于真核硒蛋白mRNA的3'非翻译区。在寻找SECIS指导的UGA通读过程背后的新因子时,我们鉴定出一种进化上保守的GTP酶激活蛋白,称为GAPsec。我们表明,果蝇GAPsec(dGAPsec)的活性对于支持果蝇中SECIS依赖的UGA通读活性以及小鼠组织培养细胞中的小鼠同源物mGAPsec是必需的。然而,缺乏dGAPsec活性的果蝇中的硒蛋白生物合成并未受损。结果表明,GAPsec是一种新的不涉及硒代半胱氨酸掺入的SECIS依赖的翻译通读系统的一部分。

相似文献

引用本文的文献

3
Evolutionary Dynamics of Abundant Stop Codon Readthrough.丰富的终止密码子通读的进化动力学
Mol Biol Evol. 2016 Dec;33(12):3108-3132. doi: 10.1093/molbev/msw189. Epub 2016 Sep 7.
4
The molecular biology of selenocysteine.硒代半胱氨酸的分子生物学
Biomol Concepts. 2013 Aug;4(4):349-65. doi: 10.1515/bmc-2013-0007.

本文引用的文献

2
Repression of protein synthesis by miRNAs: how many mechanisms?微小RNA对蛋白质合成的抑制作用:有多少种机制?
Trends Cell Biol. 2007 Mar;17(3):118-26. doi: 10.1016/j.tcb.2006.12.007. Epub 2007 Jan 2.
3
Regulated translational bypass of stop codons in yeast.酵母中终止密码子的调控性翻译通读
Trends Microbiol. 2007 Feb;15(2):78-86. doi: 10.1016/j.tim.2006.12.002. Epub 2006 Dec 21.
8
Mechanism and regulation of selenoprotein synthesis.硒蛋白合成的机制与调控。
Annu Rev Nutr. 2003;23:17-40. doi: 10.1146/annurev.nutr.23.011702.073318. Epub 2003 Jan 8.
9
Structure and function of the acidic ribosomal stalk proteins.酸性核糖体柄蛋白的结构与功能
Curr Protein Pept Sci. 2002 Feb;3(1):93-106. doi: 10.2174/1389203023380756.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验