Hirosawa-Takamori Mitsuko, Ossipov Dmitri, Novoselov Sergey V, Turanov Anton A, Zhang Yan, Gladyshev Vadim N, Krol Alain, Vorbrüggen Gerd, Jäckle Herbert
Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fassberg 11, 37077 Göttingen, Germany.
FASEB J. 2009 Jan;23(1):107-13. doi: 10.1096/fj.08-116640. Epub 2008 Sep 4.
Translational read-through of the UGA stop codon is an evolutionarily conserved feature that most prominently represents the basis of selenoprotein biosynthesis. It requires a specific cis-acting stem loop control element, termed SECIS, which is located in the 3'-untranslated region of eukaryotic selenoprotein mRNAs. In a search for novel factors underlying the SECIS-directed UGA read-through process, we identified an evolutionary conserved GTPase-activating protein, termed GAPsec. We show that the activity of the Drosophila GAPsec (dGAPsec) is necessary to support SECIS-dependent UGA read-through activity in flies and the mouse homolog mGAPsec in mice tissue culture cells. However, selenoprotein biosynthesis is not impaired in flies that lack dGAPsec activity. The results indicate that GAPsec is part of a novel SECIS-dependent translational read-through system that does not involve selenocysteine incorporation.
UGA终止密码子的翻译通读是一种进化上保守的特征,它最突出地代表了硒蛋白生物合成的基础。它需要一个特定的顺式作用茎环控制元件,称为SECIS,其位于真核硒蛋白mRNA的3'非翻译区。在寻找SECIS指导的UGA通读过程背后的新因子时,我们鉴定出一种进化上保守的GTP酶激活蛋白,称为GAPsec。我们表明,果蝇GAPsec(dGAPsec)的活性对于支持果蝇中SECIS依赖的UGA通读活性以及小鼠组织培养细胞中的小鼠同源物mGAPsec是必需的。然而,缺乏dGAPsec活性的果蝇中的硒蛋白生物合成并未受损。结果表明,GAPsec是一种新的不涉及硒代半胱氨酸掺入的SECIS依赖的翻译通读系统的一部分。